
Operating Systems and C
13. Network Programming

28.11.2022 · 1



• Course evaluation is now open
• A note on the importance of answering the course 

evaluation:
• I’ve been in the committee that receives the results.
• Often, course results are discarded due to low response rate.
• If you like this course, or have ideas on how to improve it, please answer the 

survey.

Course Evaluations

28.11.2022 2



A note about this lecture

28.11.2022 3

2003 2020



- Computer Networks
- Network Mapping (DNS, ports, IPs)
- Sockets

Outline

28.11.2022 4



Communication Abstraction

28.11.2022 · 5

Source: Saltzer and Kaashoek

Communication Link
SEND(link_name, outgoing_message_buffer)

RECEIVE(link_name, incoming_message_buffer)



Hardware Organization of a Network Host

main
memory

I/O 
bridgeMI

ALU

register file

CPU chip

system bus memory bus

disk 
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

Expansion slots

network
adapter

network



Computer Networks

A network is a hierarchical system of boxes and wires organized by 
geographical proximity

SAN (System Area Network) spans cluster or machine room
LAN (Local Area Network)  spans a building or campus
WAN (Wide Area Network) spans country or world

• Historically WAN is connected through high-speed point-to-point phone lines 
(2003)
– Today more often high-speed point-to-point fiber-optic cables (2022)

The Internet is an interconnected set of networks
The Global IP Internet (uppercase “I”) is the most famous example of an internet 

(lowercase “i”)

Let’s see how it is built from the ground up



Lowest Level: Ethernet Segment

Ethernet segment consists of a collection of hosts
connected by wires (twisted pairs) or WiFi to a hub

Spans room or floor in a building

Operation
Each Ethernet adapter has a unique 48-bit address (MAC address)
– E.g., 00:16:ea:e3:54:e6

Hosts send bits to any other host in chunks called frames
Hub slavishly copies each bit from each port to every other port
– Every host sees every bit
– Note: Hubs are on their way out. Bridges (switches, routers) became cheap 

enough to replace them (2003)
– Note: Hubs are out. Bridges has taken over (2022)
– Bridges are intelligent enough to send frames only to the intended recipient.

host host host

bridge
1 Gb/s1 Gb/s

port



Next Level: Bridged Ethernet Segment (2003)

Spans building or campus

Bridges cleverly learn which hosts are reachable from which ports and 
then selectively copy frames from port to port

host host host host host

hub hubbridge100 Mb/s 100 Mb/s

host host

hub 100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub

A B

C

X

Y



Next Level: Bridged Ethernet Segment (2022)

Spans building or campus

Bridges cleverly learn which hosts are reachable from which ports and 
then selectively copy frames from port to port

host host host host host

bridge10 Gb/s 10 Gb/s

host host

10 Gb/s 10 Gb/s

100 Gb/s

host host host

bridge

hosthost

A B

C

X

Y

bridge bridge

bridge bridge



Next Level: internets

Multiple incompatible LANs can be physically connected by 
specialized computers called routers

The connected networks are called an internet (lower case)

host host host... host host host...

WAN WAN

LAN 1 and LAN 2 might be completely different, totally incompatible 
(e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, …)

router router router
LAN 1 LAN  2



Logical Structure of an internet

Ad hoc interconnection of networks
No particular topology
Vastly different router & link capacities

Send packets from source to destination by hopping through networks
Router forms bridge from one network to another
Different packets may take different routes

router

router

router
router

router

router

host
host



How is it possible to send bits across incompatible 
LANs and WANs?

Solution:  protocol software running on each host and 
router 

Protocol is a set of rules that governs how hosts and routers 
should cooperate when they transfer data from network to 
network. 
Smooths out the differences between the different networks

The Notion of an internet Protocol



LAN2

Transferring internet Data Via Encapsulation

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

data PH FH1(4)

data PH FH2(6)

data(8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH(3) FH1

data PH FH1(2)

internet packet

LAN1 frame

(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: Internet packet header
FH: LAN frame header



Provides a naming scheme
An internet protocol defines a uniform format for host addresses
Each host (and router) is assigned at least one of these internet 
addresses that uniquely identifies it

Provides a delivery mechanism
An internet protocol defines a standard transfer unit (packet)
Packet consists of header and payload

Header: contains info such as packet size, source and destination 
addresses
Payload: contains data bits sent from source host

What does an internet protocol do?



We are glossing over a number of important questions:
What if different networks have different maximum frame 
sizes? (segmentation)
How do routers know where to forward frames?
How are routers informed when the network topology 
changes?
What if packets get lost?

These (and other) questions are addressed by the area 
of  systems known as computer networking

Other Issues



ARPANET

· 19
https://spectrum.ieee.org/tech-history/cyberspace/todays-internet-still-relies-on-an-arpanetera-protocol-the-request-for-comments



Most famous example of an internet

Based on the TCP/IP protocol family
IP (Internet Protocol) : 

Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

UDP (Unreliable Datagram Protocol)
Uses IP to provide unreliable datagram delivery from 
process-to-process

TCP (Transmission Control Protocol)
Uses IP to provide reliable byte streams from process-to-process over 
connections

Accessed via a mix of Unix file I/O and functions from the sockets interface

Global IP Internet (upper case)



Hardware and Software Organization 
of an Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware



1. Hosts are mapped to a set of 32-bit IP addresses
130.226.140.95 (2003)
- We are trying to fully replace 32-bit addresses with 64-bits addresses. It 
has not happened yet (2022)

2. The set of IP addresses is mapped to a set of identifiers called 
Internet domain names

130.226.140.95 is mapped to  cos.itu.dk

3. A process on one Internet host can communicate with a 
process on another Internet host over a connection

A Programmer’s View of the Internet



32-bit IP addresses are stored in an IP address struct
IP addresses are always stored in memory in network byte order 
(big-endian byte order)
True in general for any integer transferred in a packet header from one 
machine to another.

E.g., the port number used to identify an Internet connection.

(1) IP Addresses

/* Internet address structure */
struct in_addr {

uint32_t  s_addr; /* network byte order (big-endian) */
};



By convention, each byte in a 32-bit IP address is 
represented by its decimal value and separated by a 
period

IP address: 0x8002C2F2 = 128.2.194.242

Use getaddrinfo and getnameinfo functions 
(described later) to convert between IP addresses and 
dotted decimal format.

Dotted Decimal Notation



(2) Internet Domain Names

.net .edu .gov .com

cmu berkeleymit

cs ece

whaleshark
128.2.210.175

ics

unnamed root

pdl

www
128.2.131.66

amazon

www
176.32.98.166

First-level domain names

Second-level domain names

Third-level domain names



The Internet maintains a mapping between IP 
addresses and domain names in a huge worldwide 
distributed database called DNS

Conceptually, programmers can view the DNS database 
as a collection of millions of host entries.

Each host entry defines the mapping between a set of domain 
names and IP addresses.

In a mathematical sense, a host entry is an equivalence class 
of domain names and IP addresses.

Domain Naming System (DNS)



Clients and servers communicate by sending streams of bytes over 
connections. Each connection is:

Point-to-point: connects a pair of processes.
Full-duplex: data can flow in both directions at the same time,
Reliable: stream of bytes sent by the source is eventually received by the 
destination in the same order it was sent. 

A socket is an endpoint of a connection
Socket address is an IPaddress:port pair

A port is a 16-bit integer that identifies a process:
Ephemeral port: Assigned automatically by  client kernel when client makes a 
connection request.
Well-known port: Associated with some service provided by a server (e.g., port 
80 is associated with Web servers)

(3) Internet Connections



Popular services have permanently assigned well-known ports 
and corresponding well-known service names:

echo server: 7/echo
ssh servers: 22/ssh
email server: 25/smtp
Web servers: 80/http

Mappings between well-known ports and service names is 
contained in the file /etc/services on each Linux machine.

Well-known Ports and Service Names



A connection is uniquely identified by the socket addresses of its 
endpoints (socket pair)

(cliaddr:cliport, servaddr:servport)

Anatomy of a Connection

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242 

Server host address
208.216.181.15

51213 is an ephemeral port 
allocated by the kernel 

80 is a well-known port
associated with Web servers



Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client



Break!

28.11.2022 · 32



Set of system-level functions used in conjunction with 
Unix I/O to build network applications. 

Created in the early 80’s as part of the original Berkeley 
distribution of Unix that contained an early version of 
the Internet protocols.

Available on all modern systems
Unix variants, Windows, OS X, IOS, Android, ARM

Sockets Interface



Client Server

What is a socket?
To the kernel, a socket is an endpoint of communication
To an application, a socket is a file descriptor that lets the application 
read/write from/to the network

Remember: All Unix I/O devices, including networks, are modeled as 
files

Clients and servers communicate with each other by reading from 
and writing to socket descriptors

The main distinction between regular file I/O and socket I/O is how 
the application “opens” the socket descriptors

Sockets

clientfd serverfd



Generic socket address:
For address arguments to connect, bind, and accept
Necessary only because C did not have generic (void *) pointers when 
the sockets interface was designed
For casting convenience, we adopt the Stevens convention: 
typedef struct sockaddr SA;

Socket Address Structures

struct sockaddr { 
uint16_t  sa_family;    /* Protocol family */ 
char      sa_data[14];  /* Address data.  */ 

};       

sa_family

Family Specific



Internet-specific socket address:
Must cast (struct sockaddr_in *) to (struct sockaddr *) 
for functions that take socket address arguments. 

Socket Address Structures

0 0 0 0 0 0 0 0
sa_family

Family Specific

struct sockaddr_in  { 
uint16_t        sin_family;  /* Protocol family (always AF_INET) */ 
uint16_t        sin_port;    /* Port num in network byte order */ 
struct in_addr  sin_addr;    /* IP addr in network byte order */ 
unsigned char   sin_zero[8]; /* Pad to sizeof(struct sockaddr) */ 

}; 

sin_port

AF_INET

sin_addr

sin_family



5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client / 
Server
Session

Sockets Interface Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo



Client / 
Server
Session

SOCKETS 
INTERFA

CE

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo



Given host and service, getaddrinfo returns result that points to 
a linked list of addrinfo structs, each of which points to a corresponding 
socket address struct, and which contains arguments for the sockets interface 
functions.
Helper functions:

freeadderinfo frees the entire linked list.
gai_strerror converts error code to an error message. 

Host and Service Conversion: getaddrinfo
int getaddrinfo(const char *host,            /* Hostname or address */

const char *service,         /* Port or service name 
*/

const struct addrinfo *hints,/* Input parameters */
struct addrinfo **result);   /* Output linked list */

void freeaddrinfo(struct addrinfo *result);  /* Free linked list */

const char *gai_strerror(int errcode);       /* Return error msg */



Client / 
Server
Session

SOCKETS 
INTERFA

CE

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo



Clients and servers use the socket function to create a socket descriptor:

Example:

Protocol specific! Best practice is to use getaddrinfo to generate the 
parameters automatically, so that code is protocol independent.

Sockets Interface: socket

int socket(int domain, int type, int protocol)

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using 
32-bit IPV4 addresses

Indicates that the socket 
will be the end point of a 

connection



Client / 
Server
Session

SOCKETS 
INTERFA

CE

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo



A server uses  bind to ask the kernel to associate the server’s 
socket address with a socket descriptor:

The process can read bytes that arrive on the connection whose 
endpoint is addr by reading from descriptor sockfd.
Similarly, writes to sockfd are transferred along connection 
whose endpoint is addr.

Best practice is to use getaddrinfo to supply the arguments 
addr and addrlen. 

Sockets Interface: bind

int bind(int sockfd, SA *addr, socklen_t addrlen);



Client / 
Server
Session

SOCKETS 
INTERFA

CE

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo



By default, kernel assumes that descriptor from socket function 
is an active socket that will be on the client end of a connection.
A server calls the listen function to tell the kernel that a 
descriptor will be used by a server rather than a client:

Converts sockfd from an active socket to a listening socket
that can accept connection requests from clients. 

backlog is a hint about the number of outstanding 
connection requests that the kernel should queue up before 
starting to refuse requests. 

Sockets Interface: listen

int listen(int sockfd, int backlog);



Client / 
Server
Session

SOCKETS 
INTERFA

CE

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo



Servers wait for connection requests from clients by 
calling accept:

Waits for connection request to arrive on the 
connection bound to listenfd, then fills in client’s 
socket address in addr and size of the socket address 
in addrlen. 
Returns a connected descriptor that can be used to 
communicate with the client via Unix I/O routines. 

Sockets Interface: accept

int accept(int listenfd, SA *addr, int *addrlen);



Client / 
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo



A client establishes a connection with a server by calling connect:

Attempts to establish a connection with server at socket address addr
If successful, then clientfd is now ready for reading and writing. 
Resulting connection is  characterized by socket pair
(x:y, addr.sin_addr:addr.sin_port)

x is client address
y is ephemeral port that uniquely identifies client process on client host

Best practice is to use getaddrinfo to supply the arguments addr and 
addrlen. 

Sockets Interface: connect

int connect(int clientfd, SA *addr, socklen_t addrlen);



accept Illustrated

listenfd(3)

Client
1. Server blocks in accept, 
waiting for connection request 
on listening descriptor 
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by 
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from 
accept. Client returns from connect. 
Connection is now established between 
clientfd and connfd

connfd(4)



Listening descriptor
End point for client connection requests
Created once and exists for lifetime of the server

Connected descriptor
End point of the connection between client and server
A new descriptor is created each time the server accepts a connection request 
from a client
Exists only as long as it takes to service client

Why the distinction?
Allows for concurrent servers that can communicate over many client 
connections simultaneously

E.g., Each time we receive a new request, we fork a child to handle the 
request

Connected vs. Listening Descriptors



Client / 
Server
Session

SOCKETS 
INTERFA

CE

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo



Clients and servers communicate 
using  the HyperText Transfer Protocol 
(HTTP)

Client and server establish TCP 
connection
Client requests content
Server responds with requested 
content
Client and server close connection 
(eventually)

Current version is HTTP/1.1
RFC 2616, June, 1999. 

Web Server Basics

Web
server

HTTP request

HTTP response
(content)

Web
client

(browser) 

http://www.w3.org/Protocols/rfc2616/rfc2616.html

IP

TCP

HTTP

Datagrams

Streams

Web content



Tiny Web server described in text
Tiny is a sequential Web server
Serves static and dynamic content to real browsers

text files, HTML files, GIF, PNG, and JPEG images

239 lines of commented C code
Not as complete or robust as a real Web server

You can break it with poorly-formed HTTP requests (e.g., 
terminate lines with “\n” instead of “\r\n”)

Tiny Web Server



Accept connection from client
Read request from client (via connected socket)
Split into <method>  <uri> <version>

If method not GET, then return error
If URI contains “cgi-bin” then serve dynamic 
content

(Would do wrong thing if had file “abcgi-bingo.html”)
Fork process to execute program

Otherwise serve static content
Copy file to output

Tiny Operation



Tiny Serving Static Content
void serve_static(int fd, char *filename, int filesize)
{

int srcfd;
char *srcp, filetype[MAXLINE], buf[MAXBUF];

/* Send response headers to client */
get_filetype(filename, filetype);       
sprintf(buf, "HTTP/1.0 200 OK\r\n");    
sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);
sprintf(buf, "%sConnection: close\r\n", buf);
sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);
sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);
Rio_writen(fd, buf, strlen(buf));       

/* Send response body to client */
srcfd = Open(filename, O_RDONLY, 0);    
srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);
Close(srcfd);                           
Rio_writen(fd, srcp, filesize);         
Munmap(srcp, filesize);                 

}
tiny.c



Network as a strictly layered system: physical (ethernet), kernel (IP/TCP), 
applications

Protocol is a set of rules that governs how hosts and routers should 
cooperate when they transfer data from network to network via naming 
scheme and delivery mechanism.

Socket as communication abstraction. To the kernel, a socket is an endpoint 
of communication. To an application, a socket is a file descriptor that lets the 
application read/write from/to the network. Client connects to a server via a 
socket. Servers bind sockets to address:port, listen and accept incoming 
connections from clients. Thereafter, clients and servers can read and write.

Take-Aways

28.11.2022 · 66


