
Operating Systems and C
12. Concurrent Programming

18.11.2020 · 1

With slides from P.Tözün and J.Fürst

Full of caveats, gotchas, & head-scratches

Today: quick overview of
basic synchronization primitives

Want more: MSc courses on this.
Practical Concurrent and Parallel Programming (Y1)
Performance of Computer Systems (Data Systems)

Concurrent Programming!

18.11.2020 · 2

to master concurrent programming,
(i.e. to utilize modern HW well),
you need a solid understanding of
basic sync primitives offered by HW.

tough, maddening,
fun, $$$

• The necessity of concurrent programming
• The problem with concurrent programming
• Threads to the rescue
• Synchronization primitives

Outline

18.11.2020 · 3

C-way of handling things.
concurrency / parallelism is not a
feature of C; it’s a feature of libc.
(recall: C isn’t much; all interesting
stuff is libraries)

Two Laws of CS

4

“… the observation that the number of
transistors in a dense integrated circuit doubles

approximately every two years.”

“ … as transistors get smaller their power
density stays constant, so that the power use

stays in proportion with area.”

Moore’s law

Dennard scaling

30s

Processor Trends - Before 2005

18.11.2020 · 5

it’s a free lunch;
exponential scaling, w/
constant power draw.

Processor Trends - After 2005

18.11.2020 · 6

here, Dennard-scaling
breaks.

why: per-core not exponentially increasing;
only way to keep Moore’s law:
increase number of cores.

Processor Trends

7

core core core core

core core core corecore

multicores
(CMP)

2005

multisocket
multicores

pipelining (ILP)
multithreading

implicit parallelism 🡪 free lunch (almost)

implicit parallelism explicit parallelism

explicit parallelism 🡪 must work hard to exploit it

chip multiprocessor

instruction-level
parallelism 1 socket

difference in memory access
(uniform within socket, not across sockets)

Towards Dark Silicon

8

Can still pack more cores in a processor
Cannot fire all of them up simultaneously

graph courtesy of Hardavellas et al.

you have more cores than
you can power.

you must schedule them.
new architectures
(Graphcore, Cerebras, …)
no longer have this
classic “CPU style”.

heterogeneous systems:
CPU + specialized
hardware (FPGA, ASIC)

app-specific

Cerebras

18.11.2020 · 9

https://www.cerebras.net/

typical
NVIDIA
chip

30s

Cerebras

18.11.2020 · 10

10s

!!!

to bring data into, and out of,
a computer w/ Cerebras

• Flynn’s Classification
• SISD, SIMD, MISD, MIMD

• S: single, M: multiple, I: instruction, D: data

• Culler’s Classification
• Shared Memory (Single Address Space)

• Message Passing

• Data parallel (SIMD)

• Dataflow

Parallel Architectures

18.11.2020 · 11

perf lecture: AVX, AVX2:
optimization O4: C compiler
might automatically generate
SIMD instructions

Graphcore architecture classify by relationship
between instruction & data

classify by how processors
communicate

pipelining

Stanford, 1960s

Berkeley, currently

mpi library

Parallel computing: many calculations, or execution of
processes, are carried out simultaneously.

Concurrent computing: several processes are in
progress at the same time (concurrently) instead of
one completing before next starts (sequentially)

Parallel and Concurrent Programming

18.11.2020 · 12

to drive home the difference:
● concurrent computing is the illusion of parallel computing; processes are actually interleaved.
● parallel computing requires HW support (multiple cores).

important to understand the difference (often debated, frequently asked)

why a lecture on concurrent (not parallel): parallel optimization of concurrent.

1. Performance
Effective use of hardware

2. Productivity
Effective use of Software Dev’s time

3. Generality
To lower the cost of low-level concurrency and parallelism

Concurrent Programming’s Goals

18.11.2020 · 13

concurrent programming is a way
to manage explicit parallelism

https://xkcd.com/303/

cleaner in Go. in fact, Go was
created because of this.

● adding more cores can lead to a speed-up…
● up to a point. eventually, Tunaffected will dominate

the other term in the sum.
(anecdote: parallelizing mergesort)

takeaway: diminishing returns.

slide by Hakim Weatherspoon, from CS 3410 course at Cornell

embarrassingly parallel: task that can be divided
cleanly and split off to threads of execution. (ideal)
reality: threads need to communicate & coordinate;
incurs overhead.

analogies:
● chefs in a kitchen
● it takes 1 woman 9 months to grow a child

⇒? takes 3 women 3 months to grow a child

A Side Note

On:

● success of transactions and
automated parallelization
with SQL

● pipeline/partitioned
parallelism and the
upcoming era of dataflow
programming
(Map-Reduce => Pig/Tez)

● how hard multi-thread
programming is

18.11.2020 · 15

Jim Gray on Parallelism and Processors

(wmv; from 33:00; from 43:00)
and many other topics

dead URL? https://www.youtube.com/watch?v=8gHxKQrxV8o

platform for creating programs
that run on Apache Hadoop

https://channel9.msdn.com/Shows/Behind+The+Code/Conversation-with-scientist-engineer-and-database-legend-Jim-Gray

• The necessity of concurrent programming
• The problem with concurrent programming
• Threads to the rescue
• Synchronization primitives

Outline

18.11.2020 · 16

1. Identify Parallelizable Tasks:
Identify areas that can be divided into concurrent tasks
(ideally independent).

2. Balance:
Tasks should perform equal work of equal value.

3. Data Splitting:
How to split data that is accessed by separate tasks?

4. Data Dependency:
If data dependencies between different tasks =>
Synchronization needed.

5. Testing, Debugging:
Many different execution paths possible, testing &
debugging become more difficult.

What Makes Concurrent Programming Hard?

18.11.2020 · 17

Classical problem classes of concurrent programs:
Race: outcome depends on arbitrary scheduling decisions
elsewhere in the system

Example: who gets the last seat on the airplane?
Example: concurrent writes to a global variable

Deadlock: improper resource allocation prevents progress

Example: traffic gridlock

Livelock / Starvation / Fairness: external events and/or
system scheduling decisions can prevent sub-task progress

Example: hallway dance (livelock)
Example: people always jump in front of you in line

Concurrency Anomalies

18.11.2020 · 18

Frederick Burr Opper Alphonse and Gaston. New York Journal, 1906.

• The necessity of concurrent programming
• The problem with concurrent programming
• Threads to the rescue
• Synchronization primitives

Outline

18.11.2020 · 19

• Processes (libc)
Hard to share resources: Easy to avoid unintended sharing
High overhead in adding/removing children

• Threads (libc)
Easy to share resources
Medium overhead
Not much control over scheduling policies
Difficult to debug

Event orderings not repeatable
• I/O Multiplexing

Tedious and low level
Total control over scheduling
Very low overhead
Cannot create as fine grained a level of concurrency
Does not make use of multi-core

Concurrency in C

18.11.2020 · 20

we talked about
processes (fork, parent,
children, synchronization
(wait for each other),
sharing across
processes)

lighter form of process.
instead of 2 processes
w/ separate address
spaces, you now have 1
process, w/ multiple
threads that share
address space.
(separate stacks*, though)

in Linux, same data
structures & mechanisms
for these two

in Linux, same data
structures & mechanisms
for these two

Threads

18.11.2020 · 21

shared libraries

run-time heap

0

read/write dataThread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code and Data

read-only code/data

stackSP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Process = thread + code, data, and kernel context

stack
pointer

program
counter

top of
heap

here’s a process w/ 1 thread

Threads Multiple threads can be associated with a process

Each thread has its own logical control flow

Each thread shares the same code, data, and kernel context

Share common virtual address space (stack*)

Each thread has its own thread id (TID)

shared libraries

run-time heap

0

read/write dataThread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

 Shared code and data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

can have multiple threads in a process

*: stack is shared. but different SP
⇒ conceptually different stacks

Threads

18.11.2020 · 23

Threads associated with process form a pool of peers
Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchy
Threads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

different address
spaces. (can have
shared memory)

same address
space.

difference between process and
thread is something that’s easy for
me to ask at the exam.

Thread Execution

Single Core Processor
Simulate concurrency by

time slicing

Multi-Core Processor
Parallel execution

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

illustrating the difference between
concurrency and parallelism.

Logical Concurrency

• Two threads are (logically) concurrent if
their flows overlap in time (otherwise, sequential)

• Examples:
• Concurrent: A & B, A&C

• Sequential: B & C

Time

Thread A Thread B Thread C

Posix Threads (Pthreads) Interface
• Pthreads library: Standard interface of ~60 functions to manipulate threads from C.

• Creating and reaping threads

– pthread_create()
– pthread_join()

• Determining your thread ID

– pthread_self()
• Terminating threads

– pthread_cancel()
– pthread_exit()
– exit() [terminates all threads] , RET [terminates current thread]

• Synchronizing access to shared variables

– pthread_mutex_init
– pthread_mutex_[un]lock
– pthread_cond_init
– pthread_cond_[timed]wait

https://www.gnu.org/software/libc/manual/html_mono/libc.html#POSIX-Threads

thread interface in C
given by Posix standard.

one criticism of C:
threads are not a
beautiful concept,
but a “fix”.

30s

/* thread routine */
void *thread(void *vargp) {
 printf("Hello, world!\n");
 return NULL;
}

The Pthreads "hello, world" Program
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"

void *thread(void *vargp);

int main() {
 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value
(void **p)

http://csapp.cs.cmu.edu/3e/ics3/code/include/csapp.h
http://csapp.cs.cmu.edu/3e/ics3/code/src/csapp.c

declaration
(see below)

creates a
new thread
(e.g. T5)

blocks until
tid finishes

http://csapp.cs.cmu.edu/3e/ics3/code/include/csapp.h
http://csapp.cs.cmu.edu/3e/ics3/code/src/csapp.c

Execution of Threaded “hello, world”

main thread

peer thread

return NULL;main thread waits for
peer thread to terminate

exit()
terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

(peer thread
terminates)

Pthread_create() returns

Synchronization Issues

18.11.2020 · 29

se
q

u
en

ti
al

co
n

cu
rr

en
t

(
w

/
at

o
m

ic
 s

ta
te

m
en

ts
)

ffbb x=10, y= 8

bbff x=10, y=10

bffb x=10, y= 7

fbbf x=10, y=10

fbfb x=10, y= 7

bfbf x=10, y=10

…

…

…

x= 7, y= 7
x=10, y= 1
x= 9, y= 7
…

co
n

cu
rr

en
t

(
w

/
n

o
n

-a
to

m
ic

 s
ta

te
m

en
ts

)
co

n
cu

rr
en

t

Q: what are possible final values of x and y?

this is just a few assignments to two
variables! think about full programs.

example of data race
aka. race condition
(notoriously hard to debug!)

Ancient Greek “ἄτομος”
(atomos, “indivisible”)

Synchronization Issues

18.11.2020 · 30

to update mem[x]: (RMW)
1. read mem[x] into register,
2. op on register,
3. write from register to mem[x].

this is multi-step (non-atomic).
foo can be in midst, while
bar completes the three steps.
⇒ foo has stale mem[x]
in its register.
(cache coherence (across cores) won’t help)

to understand synchronization
issues, must know how code is
mapped to assembly.

30s

Synchronization is needed
when data structures are shared

Synchronization

18.11.2020 · 31

step back:
when do you have sharing?
what is shared?

10s

Shared Variables in Threaded C Programs

Question: Which variables in a threaded C program are shared?

The answer is not as simple as
“global variables are shared” and
“stack variables are private”

Requires answers to the following questions:

What is the memory model for threads?

How are instances of variables mapped to memory?

How many threads might reference each of these instances?

Def: A variable x is shared if and only if
multiple threads reference some instance of x.

Threads Memory Model
Conceptual model:

Multiple threads run within the context of a single process

Each thread has its own separate thread context

– Thread ID, stack, stack pointer, PC, condition codes, GP registers

All threads share the remaining process context

– Code, data, heap,
shared library segments of the process virtual address space

– Open files and installed handlers
Operationally, this model is not strictly enforced:

Register values are truly separate and protected…
… but any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Example Program to Illustrate Sharing

char **ptr; /* global */

int main()
{
 int i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;

 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{
 int myid = (int) vargp;
 static int cnt = 0;

 printf("[%d]: %s (svar=%d)\n",
 myid, ptr[myid], ++cnt);
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

loop index

thread id

array w/ 2 msgs

what is shared?
not obvious.

Mapping Variable Instances to Memory
Global variables

Def: Variable declared outside of a function

Virtual memory contains exactly one instance of any global variable

Local variables

Def: Variable declared inside function without static attribute

Each thread stack contains one instance of each local variable

Local static variables

Def: Variable declared inside function with the static attribute

Virtual memory contains exactly one instance of any local static
variable.

Mapping Variable Instances to Memory

char **ptr; /* global */

int main()
{
 int i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;

 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{
 int myid = (int)vargp;
 static int cnt = 0;

 printf("[%d]: %s (svar=%d)\n",
 myid, ptr[myid], ++cnt);
}

Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
 myid.p0 [peer thread 0’s stack],
 myid.p1 [peer thread 1’s stack]
)

Shared Variable Analysis

Which variables are shared?

Answer: A variable x is shared iff multiple threads
reference some instance of x. Thus:

■ ptr, cnt, and msgs are shared

■ i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no

yes yes yes
no yes no
no no yes

when we have
shared variables,
we need
synchronization.

New storage class keyword: __thread

One instance of the variable per thread

__thread int i;
extern __thread struct state s;
static __thread char *p;

Thread Local Storage (TLS)

18.11.2020 · 38

https://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Thread_002dLocal.html#Thread_002dLocal

modern version of
libc, new keyword

recommendation:
to make clear
what should be
shared and
what should not,
use thread-local
storage.

Crucial concept: Thread Safety

Functions called from a thread must be thread-safe

Def: A function is thread-safe iff it always produce correct results
when called repeatedly from multiple concurrent threads.

Classes of thread-unsafe functions:

Class 1: Functions that do not protect shared variables.

Class 2: Functions that keep state across multiple invocations.

Class 3: Functions that return a pointer to a static variable.

Class 4: Functions that call thread-unsafe functions.

(despite accessing shared variables; fluke)

Reentrant Functions

Def: A function is reentrant iff
it accesses no shared variables when called by multiple threads.

• Important subset of thread-safe functions.

• Require no synchronization operations.

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

there is another definition of reentrant
which makes it a subset of both
thread-safe and thread-unsafe. we
will be using the above definition.

sanity

• The necessity of concurrent programming
• The problem with concurrent programming
• Threads to the rescue
• Synchronization primitives

Outline

18.11.2020 · 41

• Doorbell, Mutex, Conditional variable, Semaphore

Def: special shared variable that
guarantees that a data structure
can only be accessed atomically

thread synchronization primitivesHW synchronization

 host software
notifies
 storage device
that data is ready
- SQ doorbell
- CQ doorbell

HW synchronization: PCIe/NVMe Doorbell

18.11.2020 · 42

submission queue

completion queue

doorbell is a boolean register

30s

now, on to
thread synchronization primitives

many questions
arise with multi-core.

main reference:

solutions are opaque,
solutions vary
between processors.

I’ll give the gist of
common cases.

Thread Synchronization

18.11.2020 · 43

section
8.1
(quite opaque)

read:
problems

gathered from scraps of info
from here and there.
why look at this: to be able to
debug performance problems

central concepts:
● cache coherence
● bus locking
● memory consistency

Cache (Recall: Memory Hierarchy)

02.09.2021 · 44

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from cache memory.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from memory.

L6:

car mechanic analogy

Cache: A smaller, faster storage device
that acts as a staging area for a subset
of the data in a larger, slower device.

why it works:
localityBig Idea: Memory

hierarchy creates a
large pool of storage
that costs as much
as the cheap storage
near the bottom, but
serves data to
programs at the rate
of the fast storage
near the top.

keeping mem
consistent:
write-through,
write-back

Q: multi-core?

source: https://course.ece.cmu.edu/~ece600/lectures/lecture17.pdf

Atomicity & Bus Locking

· 55

interconnect
(inter-core)system

interconnect

cores share buses.
Q: core 1, 2 do an op
simultaneously;
what happens? (need: atomicity)

bus locking prevents this.
“While [LOCK#] signal is asserted, requests from other
processors or bus agents for control of the bus are blocked.”

guaranteed atomic: read, write. (more later)

note on alignment: data unaligned ⇒
read might fetch two cache lines. slow

Instruction Reordering, due to pipeline hazards

https://www.cl.cam.ac.uk/teaching/2005/OptComp/

https://www.cl.cam.ac.uk/teaching/2005/OptComp/

Instruction Reordering, due to pipeline hazards

Instruction reordering due to bus locks

Hardware0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes line

64-bytes line

4-8 bytes words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware1On-Chip L1

Hardware10On/Off-Chip L2

AFS/NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0 CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

ex: access to memory is
100x more expensive
than L1 cache.

 core 1 asserts bus lock to access mem, core 2 wants access to mem
⇒ core 2 must wait for a really long time. next instructions?

which instructions reorders can take place?

weak memory model: R/Ws can be reordered arbitrarily
as long as behavior of isolated thread unaffected.
● compiler, CPU core (← weak HW memory model)

sometimes order matters.

to prevent reordering (when important):
memory barriers. (sync)

Memory [Consistency] Models

· 59

Thread #1 Core #1:
 while (f == 0);
 // Memory fence required here
 print x;
Thread #2 Core #2:
 x = 42;
 // Memory fence required here
 f = 1;

ex: NVMe I/O
ex (silly): DMA to robotic surgeon

other models: sequential consistency,
acquire/release, relaxed.
x86 has a strong memory model, w/ a
wee bit of reordering.

volatile keyword in C prevents statement
from being reordered / skipped.
(anecdote: password in Windows)

• Atomic CPU instructions:
• Fetch and Add

• Compare and Swap

• Test and Set

• Memory Barrier: operations placed before the barrier
are guaranteed to execute before operations placed
after the barrier.

• In GCC:
https://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Atomic-Builtins.html

• __sync_fetch_and_sub(),__sync_fetch_and_or(),__sync_fetch_and_and(),__sync_fet
ch_and_xor(), and__sync_fetch_and_nand()

• __sync_bool_compare_and_swap()and__sync_val_compare_and_swap()

• __sync_lock_test_and_set, __sync_lock_release

• __sync_synchronize()

Atomic CPU Operations

18.11.2020 · 60

synchronization mechanisms are
based on shared variables and
atomic instructions.

you have abstractions for the above

& Posix

Overheads

· 61

4 sockets, 8 cores

CPU0 performs a compare and swap
on a cache line residing on CPU7

recall: block layer, single queue
problem. was due to “lock thrashing”.
example (cache thrashing).

2 cores per socket

core 7 holds lock
⇒ cache has
cache line w/ lock
set to 1

all this happens when CPU0 performs
compare and swap! kills performance.

source: perfbook (last slide)

Mutex, Implementation?

18.11.2020 · 62

Can we do something like this? (easy?)

static unsigned int lockvar = 0;
static void lock() { // acquire

while (lockvar) {}
lockvar = 1;

}
static void unlock() { // release

lockvar = 0;
}

No; threads race on lockvar (double-acquire)

Need: Hardware support to guarantee that
operations on synchronization primitives
are atomic.

critical
section

that’s nice. how to implement?

critical
section

instance of readers-writers problem:
“no thread may R or W the shared resource
while another thread is W-ing to it.”

Mutex

18.11.2020 · 63

In C:
pthread_mutex_t lock;

pthread_mutex_lock(&lock);
pthread_mutex_unlock(&lock);

lock
variable

(implementation on next slide)

Mutex, sample implementation
 (w/ spinlock)

18.11.2020 · 64
https://idea.popcount.org/2012-09-12-reinventing-spinlocks/

lock is a datastructure (unsigned int)
which is set to 0 or 1 w/ compare and
swap (atomic).

usage: you take the lock before
accessing the shared variable. when
done, you unlock.
guarantee: only 1 thread gets the
lock. (guaranteed by CPU instr.)

now you see
why it’s called a
spinlock

thread yields
the core;
someone else
takes over
(hopefully the
thread that
held the lock)

important if you
only have a
single core!

area of memory

*

lock is a datastructure (unsigned int)
which is set to 0 or 1 w/ compare and
swap (atomic).

Conditional Variables

18.11.2020 · 65https://stackoverflow.com/questions/20772476/when-to-use-pthread-conditional-variables

pthread_cond_broadcast() function shall unblock
all threads currently blocked on the specified

condition variable cond.

Semaphore

18.11.2020 · 66

• Semaphore restricts the number of simultaneous threads accessing a
shared resource.
• Semaphore = counter + mutex + wait_queue

• For a binary semaphore (= mutex + conditional variable)
• wait() and signal() can be thought of as lock() and unlock()

• Calls to lock() when the semaphore is already locked cause the thread to block.

• Pitfalls:
• Must "bind" semaphores to particular objects; must remember to unlock correctly

• Mutex can only be unlocked by thread that locked it, semaphore can be signaled from
any thread => used for synchronization.

Semaphore

18.11.2020 · 67

Semaphore

18.11.2020 · 68

Take-Aways
Concurrent Programming is a necessity on today’s hardware.

Concurrency is not a first-class citizen in C; as opposed to languages based on
communicating sequential processes (e.g., golang), actor languages (e.g., erlang).

Concurrency in C is based on multi-threading.

Communication necessary across threads:
● message passing, shared memory.

Classical problems of concurrent programs:
● races, deadlocks, starvation.

Synchronization primitives needed to avoid problems in concurrent programs:
● mutex, semaphore, conditional variable.

Synchronization primitives require hardware support:
● fetch-and-add, compare-and-swap, test-and-set, memory-barrier.

Other important concepts:
● reentrant, memory model, cache coherence, bus locking, thrashing, critical section

18.11.2020 · 69

concurrency: illusion of parallel

Further reading

18.11.2020 · 70

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

Useful blogs etc.:
https://fgiesen.wordpress.com/2014/08/18/atomics-and-contention/
https://www.internalpointers.com/post/understanding-memory-ordering
https://preshing.com/20120930/weak-vs-strong-memory-models/

section
8.1
(quite opaque)

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://fgiesen.wordpress.com/2014/08/18/atomics-and-contention/
https://www.internalpointers.com/post/understanding-memory-ordering
https://preshing.com/20120930/weak-vs-strong-memory-models/

