- R *AQea b
f Qg [
Sht. ‘truc ' .

- epg {

s b TN
L int DF\,“ Orx »

L} "log or3 oy
BAl\LO t_ ')b‘:;
OND AT S 13)
< N at s
Ta ie :
Zt at {e ‘C\LlF-)OONDA .
EXtern, void p o Dm.(f\}.“?*
OlaSCapanratesta s vy, e
Frey . flom ¢ .
?\{/old init_balloon(veia) 2
. - S S . U
§ balloon.modes
7 balloon.pos.»
P

palloon.pos.) Operating SyStemS and C
palloon.pos.-

balloon. tw=®.(

- wvatteon-itoe 12, Concurrent Programming
I o®@; 1€37 S11) . xeRANTIRAND(9. 85 Trgre, 9T
T- @ saisenisset

2 1 . . [L n
. = With slides from P.T6zun and J.Furst
} r‘(vogd"

Z 110° ;

[) " drav- - vec TURE)
ve

18.11.2020 -1

Concurrent Programming!

tough, maddening,
fun, $$$

Full of caveats, gotchas, & head-scratches

. . to master concurrent programming,
Today: quick overview of (i.e. to utilize modern HW well),
. . . . el you need a solid understanding of
basic synchronization primitives

basic sync primitives offered by HW.

Want more: MSc courses on this.
Practical Concurrent and Parallel Programming (Y1)
Performance of Computer Systems (Data Systems)

IT UNIVERSITY OF COPENHAGEN

O U t I | ne /C-way of handling things.
concurrency / parallelism is not a

feature of C; it's a feature of libc.
(recall: C isn’t much; all interesting
Kstuff is libraries)

* The necessity of concurrent programming
 The problem with concurrent programming
* Threads to the rescue

* Synchronization primitives

IT UNIVERSITY OF COPENHAGEN

Two Laws of CS 30s

Moore’s law
“... the observation that the number of
transistors in a dense integrated circuit doubles
approximately every two years.”

Dennard scaling

“ ... as transistors get smaller their power
density stays constant, so that the power use
stays in proportion with area.”

IT UNIVERSITY OF COPENHAGEN

Processor Trends - Before 2005 exponentialscaling, w

constant power draw.

40 Years of Microprocessor Trend Data

7
10 ' ' : :) | "] Transistors
108 | _ v | (thousands)
105 | *s 4 | Single-Thread
5 saa'a* | Performance 3
A & [
104 _ ..{} f"‘“ a (SpecINT x 10%)
Ad a4 .; 1 v | Frequency (MHz
10% | i B g, S Tt Rl
- Po :f- a ¥ | Typical Power
102 = A A i.,. ‘. »v.-v v .v'v'v:v' " (WattS)
1 3 m " o eV ¥ | Number of
L o, A m ® N e 7| Logical Cores
10° _;: b z e e e ommmmz—
| | | | | | l

1970 1975 1980 1985 1990 1995 2000 2005

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

IT UNIVERSITY OF COPENHAGEN

18.11.2020 -5

Processor Trends - After 2005

here, Dennard-scaling
breaks.

40 Years of Microprocessor Trend Data

7
10 : : ; Transistors
I I . . - A (thousands)
T IS SNT—. S————— T W Y Sy SRS g 4 Single-Thread
: aba A 20’ Performance
: 40 A ‘“
Y O N A VT P11 Lol | (SpeciNT x 10°)
A 1',* 5
: Al 44 : 5 el Frequency (MHz)
103 _ A; : ;ﬁ,l. i IO -
a o al é Typical Power
1l e e T " v~-§~--v-v}-v'--'-¥¥;-'--'v‘fﬁ ----------- 1 (Watts)
R T
Lot TRy T st | Numberof
Rl = = R ¢ :‘* ¢ Logical Cores
¥ : v . vy
10° -‘: ------------ Z ----- > ‘ovowmmzo ---------- oo ~
| | i |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

IT UNIVERSITY OF COPENHAGEN

why: per-core not exponentially increasing;
only way to keep Moore’s law:
increase number of cores.

Processor Trends

20|05
I

implicit parallelism explicit parallelism

{ T Y | s | s | |
If | A | S | A | S | g |
|
|
|
|

e — —— — ——

\
; ; i core (| core || core || core i
678 | |
| |

\

O J[__JC__J1C__J1C_—1L

~ -

I —

N —_—_——— e —

vipelining (ILP) = prlsion”
multithreading multicores _ multisocket
(CM P) 4[chip multiprocessor] m u Itlcores

[difference in memory acc@
(uniform within socket, not across sockets
implicit parallelism [free lunch (almost)

explicit parallelism [0 must work hard to exploit it

IT UNIVERSITY OF COPENHAGEN

il - u have mor r han
Towards Dark Silicon T | e morece s tha J

® Transistor Scaling (Moore's Law)
16 + supply Voltage (ITRS(Dennard Scaling)

5 3
o)
O
£ 4
T
=
T 2
@
1
05 graph courtesy of Hardavellas et al. Y TR R U T
new architectures
QQv QQ(O QQ% Q\Q Q’Q’ Q’\«v Q’\(O Q’\r% Q’\/Q (Graphcore, Cerebras, ...)
vVYY Vyedr VOVOVY no longer have this
classic “CPU style”.)
Can still pack more cores in a processor heterogeneous systems:
f. " f th . |t | CPU + specialized
Cannot fire all o em up simuitaneouslity hardware (FPGA, ASIC)

IT UNIVERSITY OF COPENHAGEN ey

Cerebras SE——

CS-1is powered by the
Cerebras Wafer Scale
Engine - the largest chip
ever built

56x the size of the largest Graphics
Processing Unit

The Cerebras Wafer Scale Engine is 46,225 mm?2 with 1.2
Trillion transistors and 400,000 Al-optimized cores.

By comparison, the largest Graphics Processing Unit is

815 mm? and has 21.1 Billion transistors.

typical
NVIDIA

; 18.11.2020 -9
chip

IT UNIVERSITY OF COPENHAGEN

Ce re b ras to bring data into, and out of,

a computer w/ Cerebras

1. Input/Output

12{x100Gb Ethernet ports bring

m/ data to and from the Wafer

Learn More

IT UNIVERSITY OF COPENHAGEN

Parallel Architeg

perf lecture: AVX, AVX2:
optimization O4: C compiler

Stanford, 1960s might automatically generate
SIMD instructions

. . pipelining] A
® Flyn n’s CIaSS|f|Cat|Or% Graphcore architecture | [classify by relationship]
L between instruction & data
 SISD, SIMD, MISD, MIMD
 S:single, M: multiple, |: instruction, D: data

[Berkeley, currently]

e Culler’s Classification]

. lassify by h
« Shared Memory (Single Address Space) | comminieate. p“’cess"rs]

* Message Passing ﬁmpi ibrary]
* Data parallel (SIMD)

e Dataflow

IT UNIVERSITY OF COPENHAGEN

Parallel and Concurrent Programming

Parallel computing: many calculations, or execution of
processes, are carried out simultaneously.

Concurrent computing: several processes are in
progress at the same time (concurrently) instead of
one completing before next starts (sequentially)

GO drive home the difference:
e concurrent computing is the illusion of parallel computing; processes are actually interleaved.
e parallel computing requires HW support (multiple cores).

important to understand the difference (often debated, frequently asked)

Kwhy a lecture on concurrent (not parallel): parallel optimization of concurrent.

/S
IT UNIVERSITY OF COPENHAGEN

Concurrent Programming’s Goals

concurrent programming is a way |
to manage explicit parallelism)

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

2. Productivity

=

1. Performance
Effective use of hardware

Effective use of Software Dev’s time —> E

3 . G enera I |ty https://xkcd.com/303/
To lower the cost of low-level concurrency and parallelism \

\[cleaner in Go. in fact, Go was |]
created because of this.

IT UNIVERSITY OF COPENHAGEN

Pitfall. Amdahl’s Law

Execution time after improvement =
affected execution time

amount of improvement
+ execution time unaffected

T —_— Taffected

improved jiprovement factor

unaffected

embarrassingly parallel: task that can be divided
cleanly and split off to threads of execution. (ideal)
reality: threads need to communicate & coordinate;
incurs overhead.

e adding more cores can lead to a speed-up...
e up to a point. eventually, T will dominate
the other term in the sum.
(anecdote: parallelizing mergesort)
_takeaway: diminishing returns.

analogies:
e chefs in a kitchen
e it takes 1 woman 9 months to grow a child
=" takes 3 women 3 months to grow a child

IT UNIVERSITY OF COPENHAGEN

unaffected

slide by Hakim Weatherspoon, from CS 3410 course at Cornell

A Side Note

On:

® success of transactions and
automated parallelization
with SQL

e pipeline/partitioned
parallelism and the
upcoming era of dataflow
programming | Baion e seoersen - |
Jim Gray on Parallelism and Processors (Map-Reduce => Pig/Tez)

dead URL? https://www.youtube.com/watch?v=8gHxKQrxV8o

(wmv; from 33:00; from 43:00)
and many other topics

IT UNIVERSITY OF COPENHAGEN

e how hard multi-thread
programming is

18.11.2020 - 15

https://channel9.msdn.com/Shows/Behind+The+Code/Conversation-with-scientist-engineer-and-database-legend-Jim-Gray

* The necessity of concurrent programming

* The problem with concurrent programming
* Threads to the rescue

* Synchronization primitives

IT UNIVERSITY OF COPENHAGEN

What Makes Concurrent Programming Hard?

1. lIdentify Parallelizable Tasks:
Identify areas that can be divided into concurrent tasks
(ideally independent).
2. Balance:
Tasks should perform equal work of equal value.
3. Data Splitting:
How to split data that is accessed by separate tasks?
4. Data Dependency:
If data dependencies between different tasks =>
Synchronization needed.
5. Testing, Debugging:
Many different execution paths possible, testing &
debugging become more difficult.

IT UNIVERSITY OF COPENHAGEN

Concurrency Anomalies

Classical problem classes of concurrent programs:
Jarres e
RALPHONSE L)

Race: outcome depends on : (eram)
elsewhere in the system

MY DEAR | .
 GASTON:| iy .{

—— \

Example: who gets the Ia
Example: concurrent wri

Deadlock: improperresourc

Exa m t ra ffl C g I"I d IOC k Frederick Burr Opper Alphonse and Gaston. New York Journal, 1906. PEAR-"

Livelock / Starvation / Fairness: external events and/or
system scheduling decisions can prevent sub-task progress

Example: hallway dance (livelock)
Example: people always jump in front of you in line

IT UNIVERSITY OF COPENHAGEN

18.11.2020 - 18

* The necessity of concurrent programming
 The problem with concurrent programming
* Threads to the rescue

* Synchronization primitives

IT UNIVERSITY OF COPENHAGEN

. N\
Concurrency in C L P

children, synchronization
(wait for each other),
sharing across

* Processes (libc)

Hard to share resources: Easy to avoid unintended sharing processes))
High overhead in adding/removing children lighter form of process. "\
e Threads (libc) instead of 2 processes
Easy to share resources w/ separate address
Medi head spaces, you now have 1
edium overnea process, w/ multiple
Not much control over scheduling policies threads that share
Ef address space.
DIffICUIt to debug (separate stacks*, though) /

Event orderings not repeatable

structures & mechanisms

in Linux, same data
for these two

IT UNIVERSITY OF COPENHAGEN

Process = thread + code, data, and kernel context

% here’s a process w/ 1 thread]
Thread (main thread) Code and Data

shared libraries

run-time heap

1
|
|
1
|
top of H
: Thread context: read/write data
| Data registers , PC —»| read-only code/data
1
|
|
1
|
|

stack
pointer

Condition codes .
Stack pointer (SP) counter
Program counter (PC) |

: Kernel context:

____________________ | VM structures
Descriptor table
brk pointer

IT UNIVERSITY OF COPENHAGEN

Th d % can have multiple threads in a process
reads Multiple threads can be associated with a process

Each thread has its own logical control flow

Each thread shares the same code, data, and kernel context
Share common virtual address space (stack™)

Each thread has its own thread id (TID)

Thread 1 (main thread) Shared code and data Thread 2 (peer thread)

shared libraries
stack 1 stack 2
run-time heap

Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes 0 Condition codes
SP1 SP2
PC1 Kernel context: PC2

VM structures
Descriptor table

: *: stack is shared. but different SP
brk pOInter [= conceptually differents\ta(mi_]

IT UNIVERSITY OF COPENHAGEN

Threads associated with process form a pool of peers

Process hierarchy

Threads associated with process foo

e @ different address
same address spaces. (can have

space. shared memory)
“«| shared code, data @ @ @

and kernel context
difference between process and @
IT UNIVERSITY OF COPENHAGEN thread is something that’s easy for
me to ask at the exam.

Th Fed d Exec ut | on illustrating the difference between
concurrency and parallelism.

Single Core Processor Multi-Core Processor

Simulate concurrency by Parallel execution
time slicing

Thread A Thread B Thread C Thread A Thread B Thread C

B I E—
____________________________ [N

IT UNIVERSITY OF COPENHAGEN Run 3 threads on 2 cores

Logical Concurrency

 Two threads are (logically) concurrent if
their flows overlap in time (otherwise, sequential)

 Examples:

* Concurrent: A & B, A&C Thread A Thread B Thread C
" Sequential:B&C ol

fime]

IT UNIVERSITY OF COPENHAGEN

Posix Threads (Pthreads) Interface |iHEECHIN

* Pthreads library: Standard interface of ~60 functions to manipulate threads from C.
* Creating and reaping threads

30s
— pthread create()

— pthread join()

e Determining your thread ID

— pthread self ()

e Terminating threads

— pthread cancel ()

— pthread exit()

— exit () [terminates all threads], RET [terminates current thread]
* Synchronizing access to shared variables

— pthread mutex init

— pthread mutex [un]lock

— pthread cond init one criticism of C:
— pthread cond [timed]wait threads are not a
- - beautiful concept,

but a “fix”.

https://www.gnu.org/software/libc/manual/html_mono/libc.htmI#POSIX-Threads

IT UNIVERSITY OF COPENHAGEN

The Pthreads "hello, world" Program

/*

*/

int main () {
pthread t tid;

creates a =

new thread

(e.g. T5) =

blocks until
tid finishes

'

exit (0) ;
}

* hello.c - Pthreads

#include "csapp.h"

void *thread(void *vargp):

Pthread create (&tid, NULL,
Pthread join(tid, NULL);

"hello, world"

A

program

declaration
(see below)

Thread attributes
~ (usually NULL)

_Thread arguments
(void *p)

b

thread, NULL) ;

| return value

printf ("Hello,
return NULL;
}

/* thread routine */
void *thread(void *vargp) {

(void **p)

world!'\n") ;

IT UNIVERSITY OF COPENHAGEN

http://csapp.cs.cmu.edu/3e/ics3/codel/include/csapp.h
http://csapp.cs.cmu.edu/3e/ics3/code/src/csapp.c

http://csapp.cs.cmu.edu/3e/ics3/code/include/csapp.h
http://csapp.cs.cmu.edu/3e/ics3/code/src/csapp.c

Execution of Threaded “hello, world”

main thread

call Pthread_create()
Pthread_create() returns

.............. peer thread
call Pthread join) ! Tt

printf ()
main thread waits for return NULL;
peer thread to terminate (peer thread

.............. terminates)
Pthread_join() returns |« """

exit ()
terminates

main thread and
any peer threads

IT UNIVERSITY OF COPENHAGEN

Synchronization Issues [éntﬁiiﬂtﬁﬁﬁﬁ!‘v{;"'{ﬁ)’i]

Thread 1- [this is just a few assignments to two]
rea) variables! think about full programs.

func foo() {

X++:

y =X,

}

Thread 2:

func bar() {
Vbt
X+=3;

}

If the initial state isx =6, y=0,
what happens after these threads finish running?

Q: what are possible final values of x and y?]
IT UNIVERSITY OF COPENHAGEN

aka. race condition
(notoriously hard to debug!)

{example of data race

18.11.2020 - 29

Synchronization Issues 30s

Many things that look like “one step” operations take several steps under the hood:

func foo() {
eax = mem[x];
inc eax;
mem[x] = eax;
ebx = mem[x];
mem[y] = ebx;

to update mem[x]: (RMW) \
1. read mem [x] into register,

2. op on register,
3. write from register to mem [x] .

this is multi-step (non-atomic).

: foo can be in midst, while
bar completes the three steps.
func bar() { = foo has stale mem|[x]
eax = mem[y]; in its register.
HIE SHR, (cache coherence (across cores) won't help)
mem[y] = eax;
eax = mem[x]; to understand synchronization

add eax, 3; issues, must know how code is
} mem[x] = eax; mapped to assembly.

When we run a multithreaded program, we don't know what order threads run in, nor
do we know when they will be interrupted.

IT UNIVERSITY OF COPENHAGEN

Synchronization 10s

Synchronization is needed
when data structures are shared

step back:
when do you have sharing?
what is shared?

IT UNIVERSITY OF COPENHAGEN

Shared Variables in Threaded C Programs

Question: Which variables in a threaded C program are shared?

The answer is not as simple as
“global variables are shared” and
“stack variables are private”

Requires answers to the following questions:

What is the for threads?
How are of variables ?
How each of these instances?

Def: A variable x is shared if and only if
multiple threads reference some instance of x.

IT UNIVERSITY OF COPENHAGEN

Threads Memory Model

Conceptual model:
Multiple threads run within the context of a single process
Each thread has its own separate thread context
— Thread ID, stack, stack pointer, PC, condition codes, GP registers
All threads share the remaining process context

— Code, data, heap,
shared library segments of the process virtual address space

— Open files and installed handlers

IT UNIVERSITY OF COPENHAGEN

Example Program to lllustrate Sharing what s hared?
NOt ODVIOUS.

char **ptr; /* global */ /* thread routine */
void *thread(void *vargp)

int main () {

{ int myid = (int) vargp;
int 1i; thread id static int cnt = 0;
pthread t tid; array w/ 2 msgs |

char *msgs[2] = { printf (" [%d]: %s (svar=%d)\n",
"Hello from foo", myid, ptr[myid], ++cnt);
"Hello from bar" }

}: /
ptr = msgs;

Peer threads reference main thread’s stack

for (i = 0; i < 2; i++) indirectly through global ptr variable
Pthread create(&tid,
NULL,
thread,

(void *)i);
Pthread exit (NULL);

IT UNIVERSITY OF COPENHAGEN

Mapping Variable Instances to Memory

Global variables
Def: Variable declared outside of a function
Virtual memory contains exactly one instance of any global variable

Local variables
Def: Variable declared inside function without static attribute
Each thread stack contains one instance of each local variable

Local static variables
Def: Variable declared inside function with the static attribute

Virtual memory contains exactly one instance of any local static
variable.

IT UNIVERSITY OF COPENHAGEN

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])

\ Lo/ccﬁvars: 1instance (1.m, msgs.m)
char **ptr; /* global * Local var: 2 instances (
myid.pO [peerthread O’s stack],
int main () myid.pl [peerthread 1’s stack]

{)
int 1i; //

pthread tgZid;
= /* thread rouyftine */

char *msgs[2] = {
"Hello from foo" void *threadfvoid *vargp)
{

"Hello from bar"
int myid = (int)vargp;

static int cnt = 0;

¥

ptr = msgs;

for (1 = 0; 1 < 2; i++)

printf (" [%d]f %$s (svar=%d)\n",
Pthread create(&tid, [

myid, gtr[myid], ++cnt);

NULL, ;
thread, /
(void *)1); Local static var: 1 instance (cnt [data])

Pthread exit (NULL);

}

IT UNIVERSITY OF COPENHAGEN

Shared Variable Analysis

Which variables are shared?

Variable Referenced by Referenced by Referenced by

instance main thread? peerthread 0? peer thread 17
ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no
myid.pl no no yes

IT UNIVERSITY OF COPENHAGEN

T h re a d LO C a I St O ra g e (T LS) https://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Thread_002dLocal.html#Thread_002dLocal

modern version of
libc, new keyword

New storage class keyword: _ thread
One instance of the variable per thread

__thread inti;
extern __ thread struct state s;
StatiC _th read Char *p’ ﬁecommendation:\

to make clear
what should be
shared and
what should not,
use thread-local

_storage. <

IT UNIVERSITY OF COPENHAGEN

Crucial concept: Thread Safety

Functions called from a thread must be thread-safe

Def: A function is thread-safe iff it always produce correct results
when called repeatedly from multiple concurrent threads.

Classes of thread-unsafe functions: [(desp”e siesesiie Shafedm
Class 1: Functions that do not protect shared variables.

Class 2: Functions that keep state across multiple invocations.
Class 3: Functions that return a pointer to a static variable.
Class 4: Functions that call thread-unsafe functions.

IT UNIVERSITY OF COPENHAGEN

Reentrant Functions

Def: A function is reentrant iff

it accesses no shared variables when called by multiple threads.

* Important subset of thread-safe functions.

* Require no synchronization operations.

All functions

Thread-safe
functions

Reentrant

functions

Thread-unsafe
functions

IT UNIVERSITY OF COPENHAGEN

there is another definition of reentrant
which makes it a subset of both
thread-safe and thread-unsafe. we
will be using the above definition.

* The neCESSity of concurrent programming

* The problem with concurrent programming

¢ T’]readS to the rescue <[Dif: special shared variable that }
. . e e guarantees that a data structure

e Synchronization primitives

can only be accessed atomically

. Mutex, Conditional variable, Semaphore
NS J\ J
Y Y

[HW synchro‘m [thread synchronizatm
IT UNIVERSITY OF COPENHAGEN

HW synchronization: PCle/NVMe Doorbell 30s

doorbell is a boolean register

host software
notifies
storage device
that data is ready
- SQ doorbel| Asemsenmee

Host Memory

Fatch Process Quaue

Command Command Completion

NVMe Controller - CQ doorbell J_ completion queue

now, on to }
thread synchronization primitives
IT UNIVERSITY OF COPENHAGEN 18.11.2020 - 42

Thread Synchronization

many questions - oens | “
YQ giction I n te I ;

arise with multi-core.

(quite opaque)

: . Intel® 64 and IA-32 Architectures
main refe rence: > Software Developer’s Manual

. ~_Volume 3A:
SO | utions are o p 3 q ue, System Programming Guide, Part 1

lutions vary
NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual consists of ten volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-L, Order Number 253666;
etwe e n p ro C e S S O rs o Instruction Set Reference M-U, Order Number 253667; Instruction Set Reference V-Z, Order Number

326018; Instruction Set Reference, Order Number 334569; System Programming Guide, Part 1, Order
Number 253668; System Programming Guide, Part 2, Order Number 253669; System Programming
Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number 332831;
Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating your design

'll give the gist of

commaon cCases.

gathered from scraps of info central concepts:
from here and there. e cache coherence
why look at this: to be able to e bus locking
IT UNIVERSITY OF COPENHAGEN debug performance problems e memory consistency /s 112020 -43

wanic analogy]A
@ig Idea: Memory \

hierarchy creates a
large pool of storage
that costs as much
as the cheap storage
near the bottom, but
serves data to
programs at the rate
of the fast storage

near the top.

. 1 Cache: A smaller, faster storage device
CaChe (Reca”' Memory Hlera rChy) that acts as a staging area for a subset
of the data in a larger, slower device.)
~
LO: why it works:
Smaller, CPU registers hold words locality
faster, retrieved from cache memory. J
and q L1 cache N
costlier (SRAM) L1 cache holds cache lines :
(per byte) retrieved from the L2 cache. keep_lng E
storage L2: L2 cache co_nS|stent:
devices (SRAM) L2 cache holds cache lines Wr!te-thrOUQh’
retrieved from L3 cache write-back
L3: L3 cache
(SRAM) A
L3 cache holds cache lines ;
Larger, | retrieved from memory. :
slower,
and L4: Main memory
cheaper (DRAM)
(per byte) Main memory holds disk
storage blocks retrieved from local
devices disks.

IT UNIVERSITY OF COPENHAGEN

Local secondary storage
(local disks)

L5:

Local disks hold files
retrieved from disks on
remote network servers.

Q: multi-core?

Remote secondary storage
(distributed file systems, Web servers)

The Cache Coherence Problem

« Since we have private caches:

How to keep the data consistent across caches?

« Each core should perceive the memory as a monolithic array, shared
by all the cores

burce: https://course.ece.cmu.edu/~ece600/lectures/lecturel7.pdf

10/25/2017 (© J.P. Shen)

One or more
levels of
cache

One or more One or more One or more
levels of levels of levels of
cache cache cache

Main memory

18-600 Lecture #17

multi-core chip

Carnegie Mellon University 23

The Cache Coherence Problem
Suppose variable x initially contains 15213

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

Main memory
x=15213

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

multi-core chip

Carnegie Mellon University 24

The Cache Coherence Problem
Core 1 reads x

Core 1 Core 2 Core 3 Core 4
One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=15213

Main memory
x=15213

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

multi-core chip

Carnegie Mellon University 25

The Cache Coherence Problem
Core 2 reads X

Core 1 Core 2 Core 3 Core 4
One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

Xx=15213 x=15213

Main memory
x=15213

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

multi-core chip

Carnegie Mellon University 26

The Cache Coherence Problem
Core 1 writes to X, setting it to 21660

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
x=21660 ¥=15213
_ multi-core chip
; assuming
Main memory write-through
x=21660 } caches

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

Carnegie Mellon University 27

The Cache Coherence Problem
Core 2 attempts to read x... gets a stale copy

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=21660 ¥=15213

Main memory
x=21660

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

multi-core chip

Carnegie Mellon University 2s

Invalidation Based Cache Coherence Protocol
Revisited: Cores 1 and 2 have both read x

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=157213 x=15213

Main memory
x=15213

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

multi-core chip

Carnegie Mellon University 32

Invalidation Based Cache Coherence Protocol

Core 1 writes to X, setting it to 21660

Core 1 @ @ Core 4
One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
x=21660 X= 3
IL_., il b
sends ™~ INVALIDATED *
InyaAlEton multi-core chip
request)
Main memory assuming .
x=21660 write-through Inter-core bus
caches
10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 33

Invalidation Based Cache Coherence Protocol
After invalidation:

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

Xx=21660

Main memory
x=21660

10/25/2017 (© J.P. Shen)

18-600 Lecture #17

multi-core chip

Carnegie Mellon University 34

Invalidation Based Cache Coherence Protocol
Core 2 reads x. Cache misses, and loads the new copy.

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=21660 x=21660

multi-core chip

Main memory
x=21660

10/25/2017 (© J.P. Shen) 18-600 Lecture #17 Carnegie Mellon University 35

Atomicity & Bus Locking

cores share buses.
Q:corel,2doanop

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

simultaneously; ~ ~—
-core chi
what happens? (need: atomicity) M memMﬁerconnect
system (inter-core)

[

nterconnect J
bus locking prevents this.

“While [LOCK#] signal is asserted, requests from other
processors or bus agents for control of the bus are blocked.”

guaranteed atomic: read, write. (more later)

note on alignment: data unaligned =
read might fetch two cache lines. slow

IT UNIVERSITY OF COPENHAGEN

EX ([MEM| WB

RF

IF

EX |MEM| WB

RF
10 cycles

EX [MEM| WB

RF

IF

. G
)
-
.
O
c
O
=)
O
-
.
.
(Vg
=

1w $1,0($0)
add $2,$2,$1
1w $3,4($0)
add $4,$4,$3

(%)
O
S
L)
N
4°)
<
Q
c
()
o
o
@)
)
)
-
e
o]0)]
C
o
)
O
S
@
Q
o
C
9
)
(&)
-)
| -
)
(%))
c

https://www.cl.cam.ac.uk/teaching/2005/OptComp/

EX |[MEM| WB

RF

RF VEX MEM| WB

EX \MEM| WB

EX [MEM| WB

RF

RF

IF

. G
)
-
.
O
c
O
=)
O
-
.
.
(Vg
=

1w $1,0($0)
1w $3,4($0)
add $2,$2,$1
add $4,%4,$3

(%)
O
S
L)
N
4°)
<
Q
c
()
o
o
@)
)
)
-
e
o]0)]
C
o
)
O
S
@
Q
o
C
9
)
(&)
-)
| -
)
(%))
c

Instruction reordering due to bus locks

ex: access to memory is

100x more expensive
than L1 cache.

|

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 [Hardware

L1 cache 64-bytes line On-Chip L1 1 | Hardware

L2 cache 64-bytes line On/Off-Chip L2 /lQ Hardware

Virtual Memory 4-KB page Main memory < 100 Bardware + 0S

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

IT UNIVERSITY OF COPENHAGEN [

core 1 asserts bus lock to access mem, core 2 wants access to mem
= core 2 must wait for a really long time. next instructions?

L

Memory [Consistency] Models

acquire/release, relaxed.
x86 has a strong memory model, w/ a

[other models: sequential consistency,
wee bit of reordering.

which instructions reorders can take place?

weak memory model: R/Wscan bereordered arbitrarily
as long as behavior of isolated thread unaffected.
e compiler, CPU core (— weak HW memory model)

Thread #1 Core #1: \
. while (£ == 0);
sometimes order matters. /7 Hemory fence requized here
Thread #2 ’Core #2:
[ex: NVMe I/O] T/zMiigry fence required here
ex (silly): DMA to robotic surgeon £=1; 4
to prevent reordering (when important):
memory ba rriers' (SynC) volatile keyword in C prevents statement
from being reordered / skipped.
(anecdote: password in Windows)

IT UNIVERSITY OF COPENHAGEN

based on shared variables and
atomic instructions.

AtO m | C C P U O p e rat | ons synchronization mechanisms are }

* Atomic CPU instructions:
. Fetch and Add
. Compare and Swap
. Test and Set

. Memory Barrier: operations placed before the barrier
are guaranteed to execute before operations placed

after the barrier.
° In GCC: % you have abstractions for the above]

https://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Atomic-Builtins.html

. __sync_fetch_and_sub(), __sync_fetch_and _or(), __sync_fetch_and_and(), _sync_fet
ch_and_xor(), and__sync_fetch_and_nand()

. __sync_bool_compare_and_swap()and__sync_val_compare_and_swap()

. __sync_lock_test _and set, sync_lock_release

. __sync_synchronize()

IT UNIVERSITY OF COPENHAGEN

Ove rh ea d (X recall: block layer, single queue CPUO performs a compare and swap

problem. was due to Io?k thrashing’. on a cache line residing on CPU7
example (cache thrashing).

1. CPU 0 checks its local cache, and does not find the

CPUO CPU 1 CPU 2 CPU3 SACkElie.
Cache Cache Cache Cache 2. The request is forwarded to CPU 0’s and 1’s intercon-
nect, which checks CPU 1’s local cache, and does
Interconnect Interconnect .
not find the cacheline.
~ =
3. The request is forwarded to the system interconnect,
Memory System Interconnect Memory which checks with the other three dies, learning that
the cacheline is held by the die containing CPU 6
and 7.
vz SN
Interconnect Interconnect 4. The request is forwarded to CPU 6’s and 7’s inter-
Cache Cache Cache Cache connect, which checks both CPUs’ caches, finding
CPU 4 CPUS5 CPU 6 CPU 7 the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect,
and also flushes the cacheline from its cache.

6. CPU 6’s and 7’s interconnect forwards the cacheline
to the system interconnect.

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm) core 7 holds lock

2 cor ; ket = cache has
@M cache line w/ lock

set to 1

4 SOCketS y 8 CO reS 8. CPU 0’s and 1’s interconnect forwards the cacheline

to CPU 0’s cache.

7. The system interconnect forwards the cacheline to
CPU 0’s and 1’s interconnect.

source: perfbook (lastsiide) all this happens when CPUO performs 9. CPU 0 can now perform the CAS operation on the
RSNV IR Aol Eel: compare and swap! kills performance. value in its cache. .61

Mutex, Implementation?

Thread 1:

void foo() {

critical mutex.lock();
section < X++:

y =X;
mutex.unlock();
}

Thread 2:

void bar() {

critical mutex.lock();
section Y+t
X+=3;

mutex.unlock();
}

Global mutex guards access to x &Y.

[that’s nice. how to implement?]

IT UNIVERSITY OF COPENHAGEN

Can we do something like this? (easy?)

static unsigned int lockvar = 0;
static void lock() {
while (lockvar) ({}
lockvar = 1;
}
static void unlock() {
lockvar = 0;

}

Thread 1: In C: -
- oC
void foo() ¢ pthread_mutex_t lock;
mutex.lock(); 7
AR pthread _mutex_lock(&lock);
L pthread _mutex unlock(&lock);
Thread 2:

void bar() {
mutex.lock();
y++;
X+=3;
mutex.unlock();

'y

Global mutex guards access to x &Y.

[(implementation on next slide)

IT UNIVERSITY OF COPENHAGEN

lock is a datastructure (unsigned int)
which is set to 0 or 1 w/ compare and
swap (atomic).

Mutex, sample implementation

(w/ spinlock

Lamaofmemow

static inline void lock(unsigned int *lock) {

[now you see j> while (1) { lock is a datastructure (unsigned int)

why it's called a which is set to 0 or 1 w/ compare and

spinlock swap (atomic).
for (i=0; i < 10000; i++) { S—

alighe als

if (_ sync bool compare and swap(lock, 0, 1)) {

return;
}

) usage: you take the lock before

:Eread yields accessing the shared variable. when
€ core, 1 .

e sched yield(); done, you unlock.
takes over } guarantee: only 1 thread gets the
(hopefully the) lock. (guaranteed by CPU instr.)
thread that

held the lock)

static inline void unlock(unsigned int *lock) {

important if you
only have a

: sync bool compare and swap(lock, 1, 0);
single core! R = = = -

IT UNIVERSITY OF COPENHAGEN

https://idea.popcount.org/2012-09-12-reinventing-spinlocks/

Conditional Variables

pthread mutex lock (&lock);
while (SOME-CONDITION is false)
pthread cond wait (&cond, &lock);

do_stuff();
pthread mutex unlock (&lock);
pthread _mutex_lock (&lock);
ALTER-CONDITION
pthread cond_signal (&cond);
pthread_cond_broadcast() function shall unblock

allow > L0} all threads currently blocked on the specified
pthread_mutex_unlock (&lock) condition variable cond.

|T U N |VE RS |TY O F CO PEN HAG EN https://stackoverflow.com/questions/20772476/when-to-use-pthread-conditional-variables

e Asemaphore is a flag that can be raised or lowered in one step.

e Semaphores were flags that railroad engineers would use when entering a shared
track.

Set: Reset:

For more see Edsger W. Dijkstra: Cooperating sequential processes.

IT UNIVERSITY OF COPENHAGEN

18.11.2020 - 66

* Semaphore restricts the number of simultaneous threads accessing a
shared resource.
Semaphore = counter + mutex + wait_queue
 For a binary semaphore (= mutex + conditional variable)
. wait() and signal() can be thought of as lock() and unlock()
. Calls to lock() when the semaphore is already locked cause the thread to block.
e Pitfalls:
. Must "bind" semaphores to particular objects; must remember to unlock correctly

. Mutex can only be unlocked by thread that locked it, semaphore can be signaled from
any thread => used for synchronization.

IT UNIVERSITY OF COPENHAGEN

Semaphore

#include <semaphore.h>

DESCRIPTION

The <semaphore.h> header defines the sem_t type, used in performing semaphore operations. The semaphore

may be implemented using a file descriptor, in which case applications are able to open up at least a total of
OPEN_MAX files and semaphores.

The symbol SEM_FAILED is defined (see sem_open()).

The following are declared as functions and may also be declared as macros. Function prototypes must be
provided for use with an ISO C compiler.

int sem close(sem t *);

int sem destroy(sem t *);

int sem getvalue(sem t *, int *);

int sem init(sem t *, int, unsigned int);
sem_t *sem open(const char *, int, ...);

int sem post(sem_t *);

int sem trywait(sem_t *);

int sem unlink(const char *);

int sem wait(sem_t *);

IT UNIVERSITY OF COPENHAGEN

18.11.2020 - 68

Ta ke—AwayS % concurrency: illusion of parallel]

Concurrent Programming is a necessity on today’s hardware.

Concurrency is not a first-class citizen in C; as opposed to languages based on
communicating sequential processes (e.g., golang), actor languages (e.g., erlang).

Concurrency in Cis based on multi-threading.

Communication necessary across threads:
® message passing, shared memory.

Classical problems of concurrent programs:
® races, deadlocks, starvation.

Synchronization primitives needed to avoid problems in concurrent programs:
® mutex, semaphore, conditional variable.

Synchronization primitives require hardware support:
e fetch-and-add, compare-and-swap, test-and-set, memory-barrier.

Other important concepts:
® reentrant, memory model, cache coherence, bus locking, thrashing, critical section

IT UNIVERSITY OF COPENHAGEN

Further reading

0
= intel
8.1 »

(quite opaque)

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Volume 3A:
System Programming Guide, Part 1

NOTE: The Intef° 64 and IA-32 Architectures Software Developer's Manual consists of ten volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-L, Order Number 253666;
Instruction Set Reference M-U, Order Number 253667; Instruction Set Reference V/-Z, Order Number
326018; Instruction Set Reference, Order Number 3345689; System Programming Guide, Part 1, Order
Number 253668; System Programming Guide, Part 2, Order Number 253669; System Programming
Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number 332831;
Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating your design
needs.

Useful blogs etc.:
https://fgiesen.wordpress.com/2014/08/18/atomics-and-contention/
https://www.internalpointers.com/post/understanding-memory-ordering
https://preshing.com/20120930/weak-vs-strong-memory-models/

IT UNIVERSITY OF COPENHAGEN

Is Parallel Programming Hard,
and, if so,
What Can You Do About It?

Paul E. McKenney
Edited by Linux Technology Center
IBM Beaverton
paulmck @linux.vnet.ibm.com _

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

18.11.2020 - 70

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://fgiesen.wordpress.com/2014/08/18/atomics-and-contention/
https://www.internalpointers.com/post/understanding-memory-ordering
https://preshing.com/20120930/weak-vs-strong-memory-models/

