=9 - Bl 3 *loge tha "'
36 { - -tht ‘tru ¢ }
. <
37 |- Scap, LI
32 ScepPFvy
3 " iny SPFy Slory
3 L 1 . 0r3' Q(’Q@.
34 -} Ba Sar. - pos:;
35 ONDAT', e d £
St ’ o
36 at i A t;
37 Static sohbOonoay
38 ti stgﬁzeCth'a_ 2’0\ \00“.:
39 9Ctory Phero(2s).
ext - Poler- k;
40 ern. voiqg (203;
3% DrMolo(SCQPbr;\pli::‘Z:;'?a:’:’ oy, Moay o),
as ?\{Iold 1n1t_balloon(voxd) Gl
a449 : int,
45
46 3 balloon.modes .
balloon.pos.»
26 |1 Baliconipesn Operating Systems and C
= Ioon. v
49 bal _t-O.(
50 varioon-tooe Fall 2022
51 ¥ 1<
(=0) i
g:?, CTLJ R pallodl:, 11. Flle
a - ba‘l‘°°n_.
= -
.)
gg :) noOn(""‘d :
58 E ¥ W~ vec URE)
dr T r Tl"T
59 vol FyVec

11.11.2020 -1

Memory Abstraction

e memory today (again)!
e communication atend of course
still a memory abstraction

[logical name] [physical address]
el V
WRITE(name, value) . WRITE(address, value) |
Associativity Location-
READ(name) Layer READ(address) addressed
- << Memory

Associative Memory

T

memory
API

IT UNIVERSITY OF COPENHAGEN

Source: Saltzer and:Kaashoek

Computer Hardware ' recall hardware: h

| Registers \ ~ CPU store/load only via. Main memory.
: |—'\ § KHOW CPU accesses data on disk?
PC /AL : K

l System bus Memory bus
2 1

o7 '
»7 v
. I/O Main
Bus interface <:> bridge <:> memory

I/0 bus :| |:| |:| .
Expansion slots for

other devices such
uSB Graphics Disk network adapters
gopirolles adapter controller

o ' !

Mouse Keyboard Display
. hello executable
stored on disk
IT UNIVERSITY OF COPENHAGEN

ﬁ focus today]

answer:
CPU sends instruction to disk controller.
(which implements memory abstraction).
disk controller transfers to (read) / from (write)
main memory. (let’s see this in action)

CPU chip

Register file
/ V| ALU A bus is a collection of parallel wires that carry
\,—' address (aka. port), data, and control signals.
ﬁ A bus is typically shared by multiple devices.

_ : Main
Bus interface <:::> <:> memory

< I/0O bus :I |:| |:|[
Expansion slots for
other devices such

USB Graphics Disk as network adapters.
controller adapter controller

!

\

Mouse Keyboard Monitor
IT UNIVERSITY OF COPENHAGEN

Reading a Disk Sector (1)

CPU chip CPU initiates a disk read by
.............. o wiiting & command. logical block

|—> number, and destination memory
(] ALUL address to a port (address)

ﬁ associated with disk controller.

Bus interface I_ <:> Main
N % memory
| - What does a

ﬁﬁ /0 bus disk controller

& D do?
4L {} NS How d(c)) hosts

USB : .
Graphics Disk .)
controller adapter controller Interact with
Mouse Keyboard Monitor disk

{_/_ﬁ controllers?
Qs we will
address

IT UNIVERSITY OF COPENHAGEN

Reading a Disk Sector (2)

CPU chip Disk controller does its work
.............. Reglsterme (0. reads the sector) and
) performs a direct memory access
<_| AU (DMA) transfer into main memory.
ﬁ (not through the CPU)

ousmerace [] [] e
us Interface : \17 memory

T T T : ﬁ} o o
- Jbo L oL " disk controllor

USB Graphics D sk perform a
controller adapter con oller DMA?
Mouse Keyboard Monitor

Disk Qs we will
IT UNIVERSITY OF COPENHAGEN address

Reading a Disk Sector (3)

CPU chip

When the DMA transfer
completes, the disk controller
notifies the CPU with an interrupt
“ am done” (i.e., asserts a special
“interrupt” pin on the CPU)

L
memory

How are I/Os
I/0O bus

<z

> handled on the

host?
Disk How are I/Os
controller exposed tO

USB Graphics
controller adapter
Mouse Keyboard Monitor

IT UNIVERSITY OF COPENHAGEN

programmers?
Disk [—/ﬁ
Qs we will

address

Outline 105

file is the main abstraction
. 2 for data that is stored
1. File System

 How are |/Os exposed to programmers?
* How are |/Os handled on the host?

because they are cool

2. Storage devices ——
 What does a disk controller do?
* How do hosts interact with disk controllers?
* How does a disk controller perform a DMA?

IT UNIVERSITY OF COPENHAGEN

A file is an array of bytes

like memory!

File interface: create/delete, open/close, read/write

.
\ D
4
i %
A

A PHILOSOPHY OF SOFTWARE DESIGN &tfxi0ur

, Interface

T

™

Deep Module

https://www.youtube.com/watch?v=bmSAYIuONcY &feature=youtu.be

Shallow Module

Functionality

POSIX: unified unix specification.
original POSIX interface is beautiful.
(not part of C language, but std lib)

|
|

simple interface, hiding a lot of complexity.
John Ousterhout, professor at Stanford.

~

J

O Utl INne /we’ll go through \
e different layers of the file system, and

e how it works in Linux.
if you are serious about programming, then
you’ll be applying for a job where you have to
program during the interview. one vanilla
question: “what happens when you read (or

erite) to (from) a file?” <

File System Layers

Linux File System Components

IT UNIVERSITY OF COPENHAGEN

Layering and Naming

Word processing program

permissions, map files into blocks, etc.

Implementations of OPEN, READ, WRITE, and CLOSE: check

Read characters from
keyboard

Map blocks into
tracks and sectors, read
and write them

Write characters on
display

IT UNIVERSITY OF COPENHAGEN

ﬁjust an exercise in:] [103\)

Application
program

File
system

Device block
S devices

Figure from Principles of Computer System Design, Saltzer /Kaashoek

11.11.2020 - 11

Block Layer | we start with:] [303vj

A block device is an array of blocks.
To each block is associated a number,
a Logical Block Address (LBA)

sound familiar? N
virtual memory! pages!
(quantized data)

procedure sLock_NuMBER_TO_BLock (integer b) returns block block '? a L{hlt of transfer.
return device(b] (associativity layer maps block
number to actual block) J

~

hard disk drives today
(incl. SSDs) are block devices.

J

IT UNIVERSITY OF COPENHAGEN

File Layer

How to represent files?
Each file is a collection of disk blocks
(more abstractly (haha), an array of bytes)

structure inode {
integer block numbers[N]; //the numbers of the blocks that constitute the file

integer size; /I the size of the file in bytes inode (“index node”) is a collection of
block numbers (associated to the
file), and their collective size.
(we need this level of indirection)

procedure INDEX TO BLOCK NUMBER (instance of inode i, integer index) returns integer {
return i.block numbers|index);
}

procedure INODE TO BLOCK (integer oj/set, instance of inode i) returns instance of block
0 < offset /| BLOCKSIZE;
b < INDEX TO BLOCK NUMBER(inode, 0);
return BLOCK NUMBER TO BLOCK(b);

IT UNIVERSITY OF COPENHAGEN

Inode Name Layer File system state:

Inode_table

How to avoid carrying inodes around? :
number the inodes!

m— inode_number to inode table (map),
[Ievel of indirection] carry this table around.

e

procedure INODE NUMBER TO INODE(integer inode number) returns instance of inode {
return inode table[inode number];
} -

procedure INODE NUMBER TO BLOCK (integer offset, integer inode number)
returns instance of block {
structure inode i < INODE NUMBER TO INODE (inode number);
0 < offset /| BLOCKSIZE;
b < INDEX_TO_BLOCK_NUMBER (i, 0); return INODE TO BLOCK (offset, i) ;
return BLOCK_NUMBER TO BLOCK (b); o

IT UNIVERSITY OF COPENHAGEN

File Name Layer File system state:

Inode_table
Representing directories }

directory is also an inode.
now we have 2 types of inodes.

structure inode{

each block stores
integer block numbers[N]; //the numbers of the blocks that constitute the file 4 }

many inode nums

integer size; // the size of the file in bytes
integer type; /I type of file: regular file, directory,...
}

User-friendly names when you work with files, you N
don’t work with inode numbers.
you work with filenames.
need mapping from filename to

program 10 inode number.)
Paper 12 in dir, we store, alongside an

inode number, the filename of

IT UNIVERSITY OF COPENHAGEN that inode.)

File Name Layer

File system state:
Inode_table

Directory lookup

procedure NAME TO INODE NUMBER (character string filename, integer dir) returns integer {
return LOOKUP (filename, dir);
}

(inode number)]

procedure LOOKUP (character string filename, integer dir) returns integer {
instance of block b;
instance of inode i < INODE NUMBER TO INODE (dir);
if i.type = DIRECTORY then return FAILURE;

for offset from 0 to i.size — 1 do { if filename occurs in b]
b < INODE NUMBER TO BLOCK (offset, dir): ’

if STRING MATCH (filename, b) then {
return INODE_NUMBER (filename, b);// return inode number for filename

}
offset < offset + BLOCKSIZE; /I increase offset by block size
¥ :
return FAILURE; then return the inode num
¥ that’s written next to the

filename

STRING MATCH, INODE NUMBER
implementation not shown

IT UNIVERSITY OF COPENHAGEN

Path Name Layer

Hierarchy of Directories

File system state:
Inode_table

procedure PATH TO INODE NUMBER (character string path, integer dir) returns integer{

if (PLAIN NAME (path)) return NAME TO INODE NUMBER (path, dir);

else {

dir <= LOOKUP (FIRST (path), dir);
path < REST (path);
return PATH TO INODE NUMBER (path, dir);

IT UNIVERSITY OF COPENHAGEN

Absolute Path Name Layer File system state:

procedure CHDIR (path character string) { wd <= PATH TO INODE NUMBER (path, wd); }

Inode_table

Change working directory Process state:

wd

How to name a file regardless of the current working directory?

procedure GENERALPATH TO INODE NUMBER (character string path) returns integer {
if (path[0] = “/”’) return PATH_TO INODE NUMBER(path, 1);

else return PATH TO INODE NUMBER(path, wd);
}
(root inode number)]

IT UNIVERSITY OF COPENHAGEN

Unix File System Naming Scheme

File system state:
must be persistent, |n0d e_ta ble

else won’t know

Disk Layout for a which files are there Process State
file system wd

O 1 L N J
Boot | Super Bitmap for (e 8kl File File
LN N]
block | block free blocks block block
TR FC T --’.___._—.;Q‘~,Ntllllt)el‘€ dblocks -——==__
Block numbers .- S "/-zf : TRNR
V 7 / v S
,m-l\"' V 4 e \
A5 6 7 14 - 23 61
410 \\i iogl lat 1 L | | feosseeed 5 (N [—— Lo
[Nl) ol programs 7| |pong.c 19
371 1 1 =281 i L v | @ | BT sl |- +- pong(){
Lo ol L data_____ 1] I
16 | | R | SN : :
[157! o !
Mo Pl Wl
| 1 1
)N L N } ' iA
;Y 7 9 <——-Inode #s] Root | A ! A
4—}— Inode table ———» ,/ directory ‘\ direc tory 'l file
[File names -7 \ I

\ i
. “Inode #'s
Root in ode

IT UNIVERSITY OF COPENHAGEN

Symbolic Link Layer =t

How about flexible management of files?

LINK (from name, to _name);,

NK { structure inode{
UNLINK (from name);

integer block numbers[NJ;
integer size,

integer fype;
integer

once no path refers to inode,
it can be garbage collected.

IT UNIVERSITY OF COPENHAGEN

Symbolic Link Layer

How to create links across file systems
(where the inode numbers are not unique)?

procedure PATHNAME TO INODE (character string filename) returns instance of inode{
instance of inode i;
inode number <— GENERALPATH TO INODE NUMBER (filename);,
i <= INODE NUMBER TO INODE (inode number);
if i.type = SYMBOLIC then
i = GENERALPATH TO INODE NUMBER (COERCE TO STRING (i.block numbers))
return i;

IT UNIVERSITY OF COPENHAGEN

in Linux, you can mount a file

Symbolic Link Layer szstem

~

J

How to attach new disks to a file system?

MOUNT (“/dev/fd1”, “/floppy™)

disk mount point

(1) represents a file system
(2) device and root inode for the
given file system

(1) name of parent inode, i.e.,
usb

IT UNIVERSITY OF COPENHAGEN

Inode pinned in memory for
usb

Inode pinned in memory for
/dev/usb1

10s

Naming Layers in Unix File System

{ Layer H Names [Values H Context H Name-mapping algorithm
Symbolic | Path names Path |The directory| PATHNAME TO GENERAL PATH
link names hierarchy
Absolute Absolute Inode The root GENERALPATH_TO_INODE NUMBER | user-oriented
path name | path names | numbers | directory names
Path name | Relative path | Inode | The working PATH_TO_INODE NUMBER \L
names numbers | directory
File name File Inode A directory NAME_TO_INODE _NUMBER machine-user
names numbers interface
Incde Inode Inodes The inode INODE_NUMBER_TO_INODE
number numbers table ’T\
File Index Block An inode INDEX_TO_BLOCK_NUMBER quh;nz'
numbers | numbers ERISEIS
names
Block Block Blocks |The disk drive BLOCK_NUMBER_TO_ BLOCK \l,
numbers

IT UNIVERSITY OF COPENHAGEN

Source: Saltzer and Kaashoek

API: State

File system state:

Inode_table
Which files are in use? file table
file table iy :
— Process state:
fd_table
program 10 64 wd
Paper 12 L

Cursor is the first byte that will be accessed by the next read or write operation.

Which files is each process using?
fd table

Mapping from file descriptors into the file_table.
(file descriptors are per-process. natural numbers; 0 is stdin, 1 is stdout, 2 is stderr, ...)

Multiple processes can have a file open with different cursors, and
Multiple processes can have a file open sharing a cursor (fork; fd_table shared)

IT UNIVERSITY OF COPENHAGEN

API: inode

structure inode {
integer block numbers[N]; //the number of blocks that constitute the file
integer size; // the size of the file in bytes
integer type; /I type of file: regular file, directory, symbolic link
integer refcnt; /! count of the number of names for this inode :
integer userid, // the user ID that owns this inode ?J we did not talk about }
integer groupid, // the group ID that owns this inode —_€.g. access control
integer mode; // inode’s permissions
integer atime, // time of last access (READ, WRITE,...)
integer mtime; // time of last modification
integer ctime; /I time of last change of inode

IT UNIVERSITY OF COPENHAGEN

API Calls: Open Process state

Wd
file_table
fd_table inode_table

procedure OPEN (character string filename, flags, mode) {

inode number < PATH TO INODE NUMBER (filename, wd),

if inode number = FAILURE and flags = O CREATE then {// Create the file?
inode number < CREATE (filename, mode); /! Yes, create it.

} else return FAILURE;

inode <— INODE NUMBER TO INODE (inode number);

if PERMITTED (inode, flags) then { // Does this user have the required permissions?
file index < INSERT (file table, inode number);
fd < FIND UNUSED ENTRY (fd table);// Yes, find entry in file descriptor table

fd table(fd] < file index; /! Record file index for the file descriptor
return fd; // Return fd
} else return FAILURE; // No, return a failure

IT UNIVERSITY OF COPENHAGEN

API Calls: Read Process state

wWd
file _table
inode_table

program 10 64 fd_table
Paper 12 0

procedure READ (fd, reference buf, n) {

file index < fd table[fd];

cursor < file table|file index).cursor;

inode <— INODE NUMBER TO INODE (file table[file index).inode number);

m = MINIMUM (inode.size — cursor, n);

atime of inode < NOW ();

if m = 0 then return END OF FILE;

for i from 0 to m — I do {
b < INODE NUMBER TO BLOCK (i, inode number);
COPY (b, buf, MINIMUM (m — i, BLOCKSIZE));
i < [+ MINIMUM (m — i, BLOCKSIZE);

file table|file index).cursor < cursor + m;

return m;

}

IT UNIVERSITY OF COPENHAGEN

1 a word about the Linux
OUtIIne <[file system.]

File System Layers

Linux File System Components

IT UNIVERSITY OF COPENHAGEN

Linux File System — o syctem is part ofthe |

User Space
Process Process
Kermel Space © Svetorm Call uniform way for
ysiem ~4 different file systems to
! hook up to Linux.
Virtual File System ~ ———— (POSIX)
l struct bio
Block Layer
l struct request
Device Driver e

Submijssion Completion
Block Device HW

Block Device Controller

IT UNIVERSITY OF COPENHAGEN

Linux I/O System Calls

* creat, open, read, write, close, Iseek
* fsync

e [ink, unlink

e stat, Istat, fstat

e access, umask, chmod, chown, utime

i iOCtI /[libraries for this

there are also async 1/0 system calls. (e.g. aio_read)
and ways to batch system calls (io_submit, ...)

IT UNIVERSITY OF COPENHAGEN

Linux Virtual File System

The virtual file system defines the generic file system
interface and data structures:
file, dentry, inode, vfsmount, super_block.

Each specific file system provides a specific
implementation:
block-based FS (ext4, btrfs), network FS (NFS, ceph),
stackable FS, pseudo FS (sysfs),
special purpose FS (tmpfs)

IT UNIVERSITY OF COPENHAGEN

L| NUX V FS 4{ they all respect the VFS setup.

file table,
cache,
inode table, ...

Process Table Process 1 Process 2 Process 3

— User Space
User Applications

| Open File Table | File Object = File Object = File Object
libc Library

| I Linux Virtual Filesystem \ /
System Call Interface Kemel Space (VFS)

| Dentry Cache | dentry dentry dentry = dentry = dentry

VFS
Directory Cache Inode Cache
| Filesystem (ext4) — inode Table inode ' inode inode @ inode
Individual Filesystems Filesystem *
| Table =
Buffer Cache I(ISZYI%S)m —P inode Table inode inode
Device Drivers
don’t be afraid of Storage Device Storage Device
.y s . (USB) Disk Drive
VFS; it’s just inodes, ()

inode table, etc.

IT UNIVERSITY OF COPENHAGEN , , _ _ , _ o
ps://www.starlab.io/blog/introduction-to-the-linux-virtual-filesystem-vfs-part-i-a-high-level-tour

Linux Legacy Block Layer L

IT UNIVERSITY OF COPENHAGEN

block layer is taking block I/O requests, and
issuing those to HW. how hard can that be?

Userspace
Process Process
\ Z
\ /
Kernel -
| Submit 10 |
Block Layer i
3
Submission/Completion] i

Staging (Merge, Reord., etc.)]

Fairness Scheduling]

10 Accounting]

l J

Request Queue

Block device specific driver

Status / Completion
Interrupt

Y

Single queue (e.g. SATA) capable hardware device

in 2013, they started
making block layer
smart: disk receives
many random |/Os
= disk wants to
reorder them to be
sequential (lump
them together to be
smart about how you

access disk).<

ﬁevices are async, \

yet I/O from FS is
sync.

mapping from
synchronous to
asynchronous was
done by the block
layer.

https://kernel.dk/blk-mq.pdf

Scalability Problem

IT UNIVERSITY OF COPENHAGEN

I Submission/Completion

] ¥

[Staging (Merge, Reord., etc.)]

I Faimess Scheduling

[
108

[10 Accounting

l

{ Request Queue

Platform (Intel) Sandy Westmere- | Nehalem- | Westmere-

Bridge-E EP EX EX
Processor i7-3930K X5690 X7560 E7-2870
Num. of Cores 6 12 32 80
Speed (Ghz) 3.2 3.46 2.66 2.4
L3 Cache (MB) 12 12 24 30
NUMA nodes 1 2 4 8

| Block Layer

Block device specific driver

I0PS

suddenly, we have disks that are real fast,
CPUs that are fast, but
CPUs cannot access disks fast.

1_12'gm 1 socket 2 socket
™M >
750k /v
500k , S——
250k
0
1 2 3 4 5 6 2 4 6 8 10 12
1.122% 4 socket 8 socket
™M
750k
500k
2% G f \
5 10 15 20 25 30 10 20 30 40 50 60 70 80

Number of Processes

Acquire/Release HW Interrupts

Ownership

Request Queue

Lock Core0

Remote Memory

‘Accesses Soft Interrupts

CoreN

https://kernel.dk/blk-mq.pdf

L|nUX mlqblk BlOCk Layer https://kernel.dk/blk-mq.pdf

Userspace
Process Process
~ —
Kernel | libaio and others]
L]
| Submit 10 |
l |
\
[Submission/Completion] 7 A ~ Block Layer
[Staging (Merge, Insertion)]
[Tagging] > Per Core
I Software Queues
[Fairness Scheduling]
[IO Accounting]
/

Hardware
Dispatch Queues

Block device specific driver

multi-queue block layer. Status/CompIetionTT
i.e. per-core queue in software. It

sound good?

IT UNIVERSITY OF COPENHAGEN

\ 4) |

Single or multi-queue capable hardware device

Jens Axboe’s design

[block layer maintainer ?

Experimental Results isystor13] https:/kernel.dk/blk-ma.pdf

[hmm, that yielded no speedup.]
15M
12.5M 1 socket 2 socket 4 socket 8 socket
o 10M MQ
% 7.5M SQ
- 5M Raw

0 Lg
1 2 3 4 5 6 2 4 6 8 10 12 5 10 15 20 25 30 10 20 30 40 50 60 70 80
Number of Cores

10k
5 i 1 socket 2 socket 4 socket socket
2 — SQ
100 MQ
§ Raw
1 L=
1 2 3 4 10 12. 5 15 20 25 30 10 20 30 40 50 60 70 80

Number of Cores

last 10 years of work in Linux 10

15M Raw
stack: remove latency to increase L Raw (Original
o 10M

throughput to IO devices el MQ (Original)

5M
2.5M

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

0
IT UNIVERSITY OF COPENHAGEN 620 . P BN Ba W D

Linux File System

IT UNIVERSITY OF COPENHAGEN

User Space
Process Process

Kernel Space
IO System Call

:

Virtual File System T
l struct bio
P -
Block Layer
l struct request
Device Driver e

Submijssion Completion

Block Device HW

Block Device Controller

Device Drivers

* How are |/Os represented?
Data structures: bios and requests
e How are |/Os submitted?
How are I/O completions handled?
What is the storage interface?
Put differently: What is the abstraction of the
underlying storage devices?

IT UNIVERSITY OF COPENHAGEN

Data structures: bio and requests

(just wanted to mention 10s
this, not dwell on it)

._/ bi_next
ueuelist :
BAgE 4q bi_next bi_bdev
iIB : donelist : bi_vent
ilic_wec | biovec bi_bdev _VE
BIO > bio p : =
~ /1 bi_vent el
""""""" bio_tail i
i_idx / = bi_idx bi_io_vec Z
rpadge elevator_private B o vec elevator type /
: i) L
-------------- : rq_disk :
4 elevator_type / bio
2 bio
........... d page request bv_page
bv_len
............. bV—Offset
/ bv_page
page =
bv_page bv_len
bv_len bv_offset
bv_offset
bio_vec bio_vec
http://elixir.free-electrons.com/linux/latest/source/Documentation/block/biodoc.txt https://www.kernel.org/doc/Documentation/block/request.ixt

IT UNIVERSITY OF COPENHAGEN

1. File System
 How are |/Os exposed to programmers?
* How are |/Os handled on the host?
2. Storage devices
 What does a disk controller do?
* How do hosts interact with disk controllers?
* How does a disk controller perform a DMA?

IT UNIVERSITY OF COPENHAGEN

What does a SSD controller do?

1. Handles interactions with host
2. Maps logical ops onto physical reads, writes, erase

[....on NAND chips, wired in
parallel to the controller
Read Mapping — —>

Write =< Prf,;argm (LUN = logical
Trim Erase unit number)
LUN |— LUN |— LUN |— LUN |—

Shared Internal data
structures

Logical address space

LUN LUN (— | LUN |— LUN —

Garbage collection Wear Leveling

|
[(added sophistication)]

Flash Translation Layer (FTL)

M much work on clever mapping (grouping) that
lowers need for garbage collection

Physical address space

LUN — LUN — | LUN — LUN —

Flash memory array

[(wear leveling = equi-distribute the wear of disk)]

(Copenhagen!)

[(in SSD, random access is just as fast as sequential L
access, assuming well-managed parallelism)

Device-Host Interconnect

Interconnect

IT UNIVERSITY OF COPENHAGEN

* Physical Interconnect
SATA / AHCI
PCle
Ethernet

* Protocol
SATA
NVMe
NVMf

(v2.0
introduced in
July 2021)

NVMe

Why NVM Express?*

Standardized interface for non-volatile memory

Motherboard

[latency minimized]
e —__ I

 Controller Lantency 1 - .
ostenonay I v PCI>
55 — EXPRESS
50 25 o

Combined Latency (us) 3

(why: with NVMe, memory
is shared on the PCle bus)

A (driver on host)]

Controller queues (submission, completion)

M t Core n .
"’"ag""‘“ 0 , 0 _ | NI shared between host and device
(access memory on host from device)

Simple Command Set - Optimized for NVM

Admin Commands
Create 1/O Submission Queue NVM 1/ O Commands

Delete 1/0 Submission Queue Read
Create |/O Completion Queue Write
Delete 1/0 Completion Queue Flush
|GetlogPage | [write Uncorrectable (optional)
Identify Compare (optional)
Abort Dataset Management (optional)
NVMe Controller Set Features Write Zeros (optional)

Get Features

Reservation Register (optional)
Reservation Report (optional)

Asynchronous Event Request

Firmware Activate (optional) T 2 i
n Reservation Acquire (optional)
. Firmware Image Download (opt) . -
(On the deVICe) Format NVM (optional) Reservation Release (optional)
Security Send (optional)

IT UNIVERSITY OF COPENHAGEN

IDF14

Interconnect - NVMe _ Jtheprocess: |

Process
7 Campletion

AHCI NVMe
Host Memory Maximum Queue Depth 1 command queue 64K queues
Ring 32 commands per Q 64K Commands per
\ J c 3 Doorbell Q
New Tall bt \ £ New Head
Un-cacheable register 6 per non-queued command 2 per command
accesses (2K cycles 9 per queued command
each)
MXI-X and Interrupt Single interrupt; no steering 2K MSI-X interrupts
Steering
Parallelism & Multiple Requires synchronization lock No locking
reads to issue command
Efficiency for 4KB Command parameters require Command
Commands two serialized host DRAM parameters in one
Tall Doorbell fetches 64B fetch
Fetch Process Queue enarh Driver Support Typically in-box Installed with device

Command Command Compietion

NVMe Controller

if you want to be fast with how you
do 10, then you have to manipulate,
from your program, submissions
and completions.

https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Marks.pdf

IT UNIVERSITY OF COPENHAGEN

How to deal with data transfers P —ghakii e]

(recall virtual memory)

J,JG\-"' LA AT R EA -4} ,

NVMe: Submission Queue Entry :
OPCODE ’lumj
Buffer fe--f----ceee___ ; EXPRESS.
PRP List ~~~-1 PRP 1
Biiffer b En';ry -1 PRP2
A SLBA
Buffer [’ NLB
Controller SSD (S-type)
Registers ()
' Entry 0 -
Device Controller o
Queue Entry 1 o with embedded cores g‘
£ o
MMIO Offset 5 @
Registers Entry 65534 = &
: (o]
Doorbell Entry 65536 Internal Memory 2 “
NVMe: Submission Queue \ J 'é
IT UNIVERSITY OF COPENHAGEN https:/slideplayer.com/slide/14772624/ 11.11.2020 - 45

How to deal with data transfers?

Physical
address space

Once “physical address of GPU device me mory”
appears, we can use is as source or destination
address of DMA with PCle devices.

2xe0000000

Processor DMA Reguest

hi :
o PCle BAR1 Area SRC: 1200 sector
LEN: 40 sectors

DST: Oxe 0200000

m i

® exfeeeseoe
= T K
Root Complex/ e
“IOHUB” & - b'h/'\
T~y
NVMe-SSD Infiniband
HBA
PCle devices

https://www.programmersought.com/article/31311843294/

H/HeteroDB

IT UNIVERSITY OF COPENHAGEN 11.11.2020 - 46

https://www.slideshare.net/Equnix/pgconfasia-2019-bali-fullthrottle-running-on-terabytes-logdata-kohei-kaigai

usually, data must be transferred

N V M e | nte rfa ‘o{ahJ - from userspace to kernelspace

before it can be transferred to a sources: Faster |0 through io uring &

device. (copy, ctx switch, ...) Efficient /O with io_uring & J.Axboe
2015, Intel introduced
SPDK: userspace I/0. SPDK matches io_uring &
— - aio in performance.
2
shared rings 16, 4k ranQom reads
_ for submissions 14 3d xPoint
o and completions

_ = 12
" qc) - £\ alo -_'c_ = =
o3 9 G 2 g 10

x g[driver = driver] 3 =2

ol S o > 8
s =[-""" i il i I i i I - o =

&0 5 Q6

(© ['\/ [y v iy 00 o

S SSD SSD SSD = — , Tio_uring without polling

s g aio
direct mapping from 2 =io_uring with polling
userspace to o =spdk

r r n devi

IT UNIVERSITY OF COPENHAGEN

O 1 2 3 4 5 6 7 8

Alialie danth 47

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf
https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/

NVMe Interfaces https://xnvme.io/
Samsung
(Copenhagen)

xNVMe API
(f\ NVMe C :
) & N VME Namespace o
~—= Types Zoned
WL L
¥ : : . abstracts over
—jio_uring| libaio 1I0OGTL | SPDK these; uniform API
: File /O l Async Ssync|
| Passthru Passthru :
i VFS |
: Block Layer E
i NVMe Driver |

11.11.2020 -48

IT UNIVERSITY OF COPENHAGEN

Logical Address Space

Recall, the file systems slides a few slides ago ...

A block device is an array of blocks.
To each block is associated a number,
a Logical Block Address (LBA)

IT UNIVERSITY OF COPENHAGEN

Block device

IT UNIVERSITY OF COPENHAGEN

CIDR 2013

Block Device Interface

Userspace

Process

Process

Kernel

Block Layer

Submission/Completion |

Staging (Merge, Reord., etc.) I

Fairness Scheduling I

10 Accounting I

Memory Abstraction:

@content <- read(LBA)

Interrupt

Single queue (e.g. SATA) capable hal

Performance Contract

- sequential >> random
- contiguity in logical space

Performance contract?

CIDR 2009

Measuring Samsung SSD RW performance
= Qut-of-the-box ... and after filling the device!!! (similar behavior on Intel SSD)

100 100
FA T VRFTRS I 4 Bl S 8 oot e s
g B
by 10 T 10 e e ——————
§ S . St : ° g . L4
§ S e . . : ®® o g g ° "%y SV P YnBSP® P “"“. Pom RPFERe s
5 - 5 WOV SYSISRA RIS AV IR ILS A, o108
§ 1 Y 82880 8 " s fse® o % o o 07 § 1 —— AL e
2 . x©
L] * . . L] " .) rt '
rt e Avg(rt) —_
Avg(rt) — Avg(rt) o-o-b—
0.1 : : : : 0.1 ‘ ‘ i ‘
100 200 300 400 500 100 200 300 400 500
10 number 10 number
Random Writes — Samsung SSD Random Writes — Samsung SSD
Out of the box After filling the device

IT UNIVERSITY OF COPENHAGEN

Performance contract? [

IT UNIVERSITY OF COPENHAGEN

throughput (MB/s)

2500 +

2000

1500

1000

500

Samsung SSD with Z-NAND

Throughput

H KOPS A

_/\

\

\

N~

T T T T T T T T T T T t
512B 1kB 2kB 4kB 8kB 16kB 32kB 64kB 128kB 256kB 512kB 1MB

transfer size

- 80

- 70

I 60

r 50

throughput (MB/s)

2500 +

2000

1500

1000

500

Intel Optane

Throughput
H KkIOPS

T T T T T T T T T T T T
512B 1kB 2kB 4kB 8kB 16kB 32kB 64kB 128kB 256kB 512kB 1MB

transfer size

No intrinsic performance characteristics
for SSDs (equipped with a generic FTL)

[(flash translatm

there is nothing interesting about the design of an
SSD; it’s all about the design of the FTP, and how
things are mapped from interface to device.

random writes- source: Anandlec

019

- 50
[
g
- 40
oy
30 O
5
wn

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3

Open-Channel

Physical address space exposed

* host can make decisions about
data placement & 1/0 scheduling

SSD management split between

* back-end (embedded on SSD)
block metadata & wear levelling
(for warrantee)

* front-end (host-based) FTL
mapping of logical to physical
address spaces, overprovisioning,
& garbage collection

IT UNIVERSITY OF COPENHAGEN

“Let’'s make an SSD with no FTL”.
(you don’t want the FTL in your way)
(if you can manage all on machine)

|

Block

Open-Channel

Host System

I Logical Addressing
(Read/Write)

Solid-State Drive

Block Metadata

Write Buffering

Wear-leveling

Error Handling

Media Controller [

Non-Volatile Media

Host System

Physical Addressing
(Read/Write/Erase)

Open-Channel
Solid-State Drive

Block Metadata

Wear-leveling

Error Handling

Media Controller

Non-Volatile Media

O pe n-Cha N nel alibaba, Western Digital, Microsoft, ...

but didn’t become part of NVMe
standard.

usenix
THE ADVANCED
' COMPUTING SYSTEMS

ASSOCIATION

e
Matias Bjarling - 1st
Li g htNVM: The Li nux 0 pen _Cha nn el Director, Emerging System Architectures at Western Digital
SSD Subsystem Copenhagen, Capital Region, Denmark - 500+ connections -
Matias Bjerling, CNEX Labs, Inc. and IT University of Copenhagen; Javier Gonzalez,
CNEX Labs, Inc.; Philippe Bonnet, IT University of Copenhagen | M Principal Software Engineer | SSDR R&D Center Lead
b ——————— Samsung Electronics
@. ng https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling Jan 2079 - Presert - 10 mos
- » . ," Copenhagen Area, Capital Region, Denrark
N;m Oro;n the source

| established and lead Samsurg Semiconductar Denmark Research (SSDR) - Samsung’s
Memery Solutions first R&D center in Europe and fifth worldwide.

Taking control of SSDs with LightNVM

Javier Gonzalez
CNEX LABS AND BROADCOM WIN @
MOST INNOVATIVE FLASH MEMORY
TECHNOLOGY AWARD AT FLASH D)
MEMORY SUMMIT 2017 DPEN CHANNEL $SDs: ﬂ Alibaba Open Channel Ecosystem
v Flash Memory Summit
CNEX Labs Open-Channel SSD technology and EXTENDING SPDI'S REACH I

Broadcom'’s NetXtreme S-Series SOC provide
unprecedented 10 isolation and scalability for
hyperscale and cloud service providers

leadng doud service rovider combined with inte’s strergth as
oy ey vt opaiegacs ecosystem for Open Channel SSD
12 deliver the noustry's 15t Open Channel SSO product

As Atiaba’ artnar on Open Chaenel SS05, Intet " P ing wi ;
& i ’m g b g svved * Alibabais collaborating with major
(n te' e covalidata 2vs innovalive scnson, Albaba's song as & vendors in industry to build an

* Share development & debug resources
#YShE
@]UNlCz M‘cron S'&ynix = Reduce time & complexity for SSD

O shamonsystems CNEXLABS
IT UNIVERSITY OF COPENHAGEN

© Asbaba Group 2018 €D fikny

Massive deployment in 2019

Zoned Namespaces (ZNS)

Host
responsibility

you: how to map workload onto zones,
disk: manage parallelism best possible SSD
responsibility

, LBA space divided into sequentially written ranges

Zone0 Zonel Zone2 Zone3 KN m

- ~ <
- ~

.,Se’q’ﬁéntial Write Required -

Write pointerA s \\/rite commands advance write pointer
(e Reset write pointer commands rewind the write pointer

IT UNIVERSITY OF COPENHAGEN

ﬁ successor:] [3OSQ

Explicit zone transition Implicit zone
Write command transition
Write pointer per zone Append command at

large queue depth

Zone placement Zone placement
I/O scheduling I/O scheduling

sequential writes
within a zone

|

one level of control on device.
(not as good as open-channel)

Application 1

! ! !

Conventional SSD Controller

Flash

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEN
EEEEEEEEEEEEEEE
O0000 0000000000
OO00oooooooOoOooo
O000000000O0O00O00OO

Application 2 Application 3

IT UNIVERSITY OF COPENHAGEN

Regular SSD: Device controls data
placement

NVMe: Block and Zoned namespaces

https://nvmexpress.org/new-nvmetm-specification-defines-zoned-namespaces-zns-as-go-to-industry-technology/

Application 1

Application 2 Application 3

! ! !

ZNS SSD Controller

————————————————————————————

/.DDDDQDDDDDDDDDD-

uElEIDElEInDDEIDD"DDDDD'
uDElEIDD'-DDDDD"EIEIDDEI'
lDDDDDhDDDDD"DDDDD'
'DDDDD"DDDDD 00000,

ZNS SSD: Applications control data
placementin zones

11.11.2020 - 56

1. File System

 How are |/Os exposed to programmers?

* How are |/Os handled on the host?

. conventional SSD: a lot of complexity
2. Storage devices on device; gets in way of host.
] open-channel: host did too much work.
¢ What does d dISk ContrO”er dO? ZNS is a compromise, still not perfect.
e How do hosts interact with disk controllers?

* How does a disk controller perform a DMA?

<[idea: you should be able to program your SSDs. }

IT UNIVERSITY OF COPENHAGEN

Computational Storage

Put Everything Basic Argument for x-Disks
: : ® Future disk controller is a super-computer.

in Future -(D|§k) Controllers it menine

(it’s not “if”, it’s “when?”) »128 MB dram

» 100 GB disk plus one arm

® Connects to SAN via high-level protocols
» RPC, HTTP, DCOM, Kerberos, Directory Services,....
»» Commands are RPCs
) management, security,....
» Services file/web/db/... requests
» Managed by general-purpose OS with good dev environment

Jim Gray

http://www.research.Microsoft.com/~Gray

Acknowledgements:
Dave Patterson explained this to me a year ago
Kim Keeton) ‘

Erik Riedel (JHelped me sharpen

these arguments ® Move apps to disk to save data movement

Catharine Van Ingen »need programming environment in controller

Jim Gray, NASD Talk, 6/8/98
http://jimgray.azurewebsites.net/iimaraytalks.htm

Computational storage = Computation on the 10 Path

IT UNIVERSITY OF COPENHAGEN

https://www.youtube.com/watch?v=3CeOlY1PO-Y

storage industry has defined an architecture for
computational storage. NVMe will be standard.

FPGA Only SINGLE ASIC Solution

Computational storage

\ FPGA to Multi-SSD | . FPGA/SSD Controller |

8 D 1

Specialized storage interface + functionality offload

IT UNIVERSITY OF COPENHAGEN

Communication Abstraction

what we get to... is a communication abstraction.
not just blocks, but e.g. 8MB object, transactions, ...

SEND(link_name, outgoing_message_buffer)

RECEIVE(link_name, incoming_message_buffer) CO m m U n |Cat| O n Ll n k
D 2

Source: Saltzer and Kaashoek

IT UNIVERSITY OF COPENHAGEN

IELGRAVENR

File abstraction is one of Unix enduring contribution. Beautiful
example of a deep module. You should be able to describe the
data structures and name mapping steps involved in file system
operations.

NVMe as host/storage interface. NVMe manages
completion/submission queues. NVMe namespaces include
block device and zones.

With computational storage, storage devices are moving from a
memory to a communication abstraction.

IT UNIVERSITY OF COPENHAGEN

