
Operating Systems and C
Fall 2022
11. File

11.11.2020 · 1



Memory Abstraction

11.11.2020 · 2Source: Saltzer and Kaashoek

Associativity
Layer

Location-
addressed 
Memory

WRITE(name, value) WRITE(address, value)

READ(address)READ(name)

Associative Memory

recall fundamental abstractions 
● interpreter during lecture 4
● memory today (again)!
● communication at end of course

still a memory abstraction

logical name physical address

memory
API

mapping



Computer Hardware

11.11.2020 · 3

Main
memory

I/O 
bridgeBus interface

ALU

Registers

CPU

System bus Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display

Disk

I/O bus
Expansion slots for
other devices such
as network adapters

hello executable 
stored on disk

PC

recall hardware:
● CPU
● memory (main memory, disk) 
● communication

CPU store/load only via. Main memory.
How CPU accesses data on disk?

focus today

20s



I/O Bus

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Monitor
Disk

I/O bus

Bus interface

A bus is a collection of parallel wires that carry 
address (aka. port), data, and control signals.

A bus is typically shared by multiple devices.

Mouse Keyboard

Expansion slots for
other devices such
as network adapters.

answer:
CPU sends instruction to disk controller.
(which implements memory abstraction).
disk controller transfers to (read) / from (write) 
main memory. (let’s see this in action)



Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Monitor
Disk

I/O bus

Bus interface

CPU initiates a disk read by 
writing a command, logical block 
number, and destination memory 
address to a port (address) 
associated with disk controller.

What does a 
disk controller 

do?
How do hosts 
interact with 

disk 
controllers?

Mouse Keyboard

10s

Qs we will 
address



Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Monitor
Disk

I/O bus

Bus interface

Disk controller does its work
(i.e. reads the sector) and 
performs a direct memory access 
(DMA) transfer into main memory.
(not through the CPU)

 How does a 
disk controller 

perform a 
DMA? 

Mouse Keyboard

Qs we will 
address

10s



Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Monitor
Disk

I/O bus

Bus interface

When the DMA transfer 
completes, the disk controller 
notifies the CPU with an interrupt 
“I am done” (i.e., asserts a special 
“interrupt” pin on the CPU)

How are I/Os 
handled on the 

host?
How are I/Os 
exposed to 

programmers?Mouse Keyboard

Qs we will 
address

10s



1. File System
• How are I/Os exposed to programmers?

• How are I/Os handled on the host?

2. Storage devices
• What does a disk controller do?

• How do hosts interact with disk controllers?

• How does a disk controller perform a DMA?

3. Computational Storage

Outline

11.11.2020 · 8

10s

file is the main abstraction 
for data that is stored

because they are cool



A file is an array of bytes

File interface: create/delete, open/close, read/write

Files

11.11.2020 · 9
https://www.youtube.com/watch?v=bmSAYlu0NcY&feature=youtu.be

like memory!

POSIX: unified unix specification.
original POSIX interface is beautiful.
(not part of C language, but std lib)

simple interface, hiding a lot of complexity.
John Ousterhout, professor at Stanford.



File System Layers
What happens when you open a file or when you read from a file?

Linux File System Components
How is the Linux file system organized?

Outline

11.11.2020 · 10

we’ll go through 
● different layers of the file system, and 
● how it works in Linux. 

if you are serious about programming, then 
you’ll be applying for a job where you have to 
program during the interview. one vanilla 
question: “what happens when you read (or 
write) to (from) a file?”



Layering and Naming

11.11.2020 · 11

Figure from Principles of Computer System Design, Saltzer /Kaashoek

just an exercise in:

block 
devices

10s



Block Layer

A block device is an array of blocks.
To each block is associated a number, 

a Logical Block Address (LBA)

we start with:

hard disk drives today 
(incl. SSDs) are block devices.

30s

sound familiar?
virtual memory! pages!
(quantized data)
block is a unit of transfer.
(associativity layer maps block 
number to actual block)

sound familiar?
virtual memory! pages!
(quantized data)
block is a unit of transfer.
(associativity layer maps block 
number to actual block)



File Layer

How to represent files?
Each file is a collection of disk blocks

(more abstractly (haha), an array of bytes)

inode (“index node”) is a collection of 
block numbers (associated to the 
file), and their collective size.
(we need this level of indirection)



Inode Name Layer

How to avoid carrying inodes around?

File system state:
inode_table

number the inodes!
inode_number to inode table (map),
carry this table around.level of indirection

return INODE_TO_BLOCK(offset,i);



File Name Layer

Representing directories
directory is also an inode.
now we have 2 types of inodes.

each block stores 
many inode nums

User-friendly names

File name Inode number

program 10

Paper 12

when you work with files, you 
don’t work with inode numbers.
you work with filenames.
need mapping from filename to 
inode number.

in dir, we store, alongside an 
inode number, the filename of 
that inode.

File system state:
inode_table



File Name Layer

Directory lookup

(inode number)(inode number)

if filename occurs in b,

then return the inode num 
that’s written next to the 
filename

STRING_MATCH, INODE_NUMBER
implementation not shown

File system state:
inode_table



Path Name Layer

Hierarchy of Directories

File system state:
inode_table



Absolute Path Name Layer

How to name a file  regardless of the current working directory?

File system state:
inode_table

Process state:
wd

Change working directory

(root inode number)



Unix File System Naming Scheme

Disk Layout for a 
file system

File system state:
inode_table

Process state:
wd

must be persistent, 
else won’t know 
which files are there



Symbolic Link Layer

How about flexible management of files?

we can have multiple paths 
to the same inode.

once no path refers to inode,
it can be garbage collected.



Symbolic Link Layer

How to create links across file systems 
(where the inode numbers are not unique)?



Symbolic Link Layer

How to attach new disks to a file system?

(1) represents a file system
(2) device and root inode for the 

given file system

Inode pinned in memory for 
usb

Inode pinned in memory for 
/dev/usb1

(1) name of parent inode, i.e., 
usb

in Linux, you can mount a file 
system

10s

disk mount point



Naming Layers in Unix File System

Source: Saltzer and Kaashoek

10s



API: State

Which files are in use?
file_table

File system state:
inode_table
file_table

Process state:
fd_table
wd

File name Inode number cursor

program 10 64

Paper 12 0

Cursor is the first byte that will be accessed by the next read or write operation. 

Which files is each process using?
fd_table

Mapping from file descriptors into the file_table.
(file descriptors are per-process. natural numbers; 0 is stdin, 1 is stdout, 2 is stderr, …)

Multiple processes can have a file open with different cursors, and
Multiple processes can have a file open sharing a cursor (fork; fd_table shared)



API: inode

we did not talk about 
e.g. access control



API Calls: Open

fd_table

Process state

Wd
file_table
inode_table

skip



API Calls: Read

fd_table

Process state

Wd
file_table
inode_table

File name Inode 
number

cursor

program 10 64

Paper 12 0

skip



File System Layers
What happens when you open a file or when you read from a file?

Linux File System Components
How is the Linux file system organized?

Outline

11.11.2020 · 28

a word about the Linux 
file system.



Linux File System

11.11.2020 29

User Space

Kernel Space

Process Process

IO System Call

Virtual File System

Block Layer

Device Driver

Block Device Controller

Block Device HW

Submission Completion

struct request

struct bio

file system is part of the 
operating system.

uniform way for 
different file systems to 
hook up to Linux.
(POSIX)



• creat, open, read, write, close, lseek
• fsync
• link, unlink
• stat, lstat, fstat
• access, umask, chmod, chown, utime
• ioctl

there are also async I/O system calls. (e.g. aio_read)
and ways to batch system calls (io_submit, …)

Linux I/O System Calls

11.11.2020 · 30

libraries for this



The virtual file system defines the generic file system 
interface and data structures: 

file, dentry, inode, vfsmount, super_block.

Each specific file system provides a specific 
implementation: 

block-based FS (ext4, btrfs), network FS (NFS, ceph), 
stackable FS, pseudo FS (sysfs), 
special purpose FS (tmpfs)

Linux Virtual File System

11.11.2020 · 31



Linux VFS  

https://www.starlab.io/blog/introduction-to-the-linux-virtual-filesystem-vfs-part-i-a-high-level-tour

they all respect the VFS setup.

file table,
cache, 
inode table, …

don’t be afraid of 
VFS; it’s just inodes, 
inode table, etc.



Linux Legacy Block Layer

https://kernel.dk/blk-mq.pdf

in 2013, they started 
making block layer 
smart: disk receives 
many random I/Os 
⇒ disk wants to 
reorder them to be 
sequential (lump 
them together to be 
smart about how you 
access disk).

devices are async,
yet I/O from FS is 
sync.
mapping from 
synchronous to 
asynchronous was 
done by the block 
layer.

block layer is taking block I/O requests, and 
issuing those to HW. how hard can that be?



Scalability Problem

https://kernel.dk/blk-mq.pdf

suddenly, we have disks that are real fast,
CPUs that are fast, but
CPUs cannot access disks fast.



Linux mlqblk Block Layer

Jens Axboe’s design

https://kernel.dk/blk-mq.pdf

multi-queue block layer.
i.e. per-core queue in software.
sound good?

block layer maintainer



Experimental Results [Systor13] https://kernel.dk/blk-mq.pdf

hmm, that yielded no speedup.

last 10 years of work in Linux IO 
stack: remove latency to increase 
throughput to IO devices



Linux File System

11.11.2020 37

User Space

Kernel Space

Process Process

IO System Call

Virtual File System

Block Layer

Device Driver

Block Device Controller

Block Device HW

Submission Completion

struct request

struct bio

1s



• How are I/Os represented?
Data structures: bios and requests

• How are I/Os submitted?
How are I/O completions handled?

What is the storage interface?
Put differently: What is the abstraction of the 

underlying storage devices?

Device Drivers

11.11.2020 · 38

10s



Data structures: bio and requests

11.11.2020 · 39

http://elixir.free-electrons.com/linux/latest/source/Documentation/block/biodoc.txt https://www.kernel.org/doc/Documentation/block/request.txt

10s(just wanted to mention 
this, not dwell on it)



1. File System
• How are I/Os exposed to programmers?

• How are I/Os handled on the host?

2. Storage devices
• What does a disk controller do?

• How do hosts interact with disk controllers?

• How does a disk controller perform a DMA?

3. Computational Storage

Outline

11.11.2020 · 40



1. Handles interactions with host
2. Maps logical ops onto physical reads, writes, erase

What does a SSD controller do?

LUN

LUN

LUN

…

LUN

LUN

LUN

…

LUN

LUN

LUN

…

LUN

LUN

LUN

…

Read
Write
Trim

Lo
gi

ca
l a

dd
re

ss
 s

pa
ce

Ph
ys

ic
al

 a
dd

re
ss

 s
pa

ce

Mapping

Wear LevelingGarbage collection

Shared Internal data 
structures

Read
Program

Erase

Flash memory array

Flash Translation Layer (FTL)
(in SSD, random access is just as fast as sequential 
access, assuming well-managed parallelism)

… on NAND chips, wired in 
parallel to the controller

(added sophistication) (wear leveling = equi-distribute the wear of disk)

much work on clever mapping (grouping) that 
lowers need for garbage collection

(LUN = logical 
unit number)

(Copenhagen!)



Device-Host Interconnect

•Physical Interconnect

SATA / AHCI

PCIe

Ethernet

…

•Protocol

SATA

NVMe

NVMf

Host

Storage 
Device

Interconnect

10s



NVMe (v2.0 
introduced in 
July 2021)

latency minimized

(why: with NVMe, memory 
 is shared on the PCIe bus)

(on the device)

(driver on host)

queues (submission, completion) 
shared between host and device 
(access memory on host from device) 



Interconnect - NVMe

https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Marks.pdf

if you want to be fast with how you 
do IO, then you have to manipulate, 
from your program, submissions 
and completions.

the process:
30s



How to deal with data transfers?

11.11.2020 · 45https://slideplayer.com/slide/14772624/

where things are stored
(recall virtual memory) 30s



How to deal with data transfers?

11.11.2020 · 46
https://www.slideshare.net/Equnix/pgconfasia-2019-bali-fullthrottle-running-on-terabytes-logdata-kohei-kaigai

https://www.programmersought.com/article/31311843294/



47

NVMe Interfaces

SPDK

app

app app

aio

driver

io_uring

sources: Faster IO through io_uring &  
Efficient I/O with io_uring & J.Axboe

memory copy
shared rings
for submissions
and completions

IR
Q

-b
as

ed

p
o

lli
n

g 
o

r 
IR

Q
-b

as
ed

SSD SSD SSD

p
o

lli
n

g+
d

ri
ve

r

u
se

r
sp

ac
e

O
S

ke
rn

el
st

o
ra

ge

driver

4k random reads
3d xPoint

usually, data must be transferred 
from userspace to kernelspace 
before it can be transferred to a 
device. (copy, ctx switch, …)

2015, Intel introduced 
SPDK: userspace I/O.

direct mapping from 
userspace to 
datastructures on device.

SPDK matches io_uring & 
aio in performance.

https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf
https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/


NVMe Interfaces

11.11.2020 · 48

https://xnvme.io/

Samsung
(Copenhagen)

abstracts over 
these; uniform API



Recall, the file systems slides a few slides ago …

 

Logical Address Space

11.11.2020 · 49

A block device is an array of blocks.
To each block is associated a number, 

a Logical Block Address (LBA)



50

Block device 
CIDR 2013



Performance contract?

51

Measuring Samsung SSD RW performance 
▪ Out-of-the-box … and after filling the device!!! (similar behavior on Intel SSD)

Random Writes – Samsung SSD
Out of the box

Random Writes – Samsung SSD
After filling the device

CIDR 2009



52

th
ro

u
gh

p
u

t 
(M

B
/s

)

th
ro

u
gh

p
u

t 
(M

B
/s

)
kIO

Ps

kIO
Ps

transfer size transfer size

Samsung SSD with Z-NAND Intel Optane

random writes- source: AnandTech 2019

Performance contract?

No intrinsic performance characteristics 
for SSDs (equipped with a generic FTL) 

(flash translation layer)

there is nothing interesting about the design of an 
SSD; it’s all about the design of the FTP, and how 
things are mapped from interface to device.

https://www.anandtech.com/show/13951/the-samsung-983-zet-znand-ssd-review/3


Open-Channel

53

Open-ChannelBlock
Physical address space exposed
• host can make decisions about 

data placement & I/O scheduling
SSD management split between
• back-end (embedded on SSD)

block metadata & wear levelling 
(for warrantee)

• front-end (host-based) FTL
mapping of logical to physical 
address spaces, overprovisioning, 
& garbage collection

“Let’s make an SSD with no FTL”.
(you don’t want the FTL in your way)
(if you can manage all on machine)



alibaba, Western Digital, Microsoft, …
but didn’t become part of NVMe 
standard.



55

Zoned Namespaces (ZNS)

Mode Host managed Host aware

Host 
responsibility

Explicit zone transition
Write command
Write pointer per zone

Implicit zone 
transition
Append command at 
large queue depth

SSD 
responsibility

Zone placement
I/O scheduling

Zone placement
I/O scheduling
sequential writes 
within a zone

Zone 0 Zone 1 Zone 2 Zone 3 Zone X

Write pointer Write commands advance write pointer

Reset write pointer commands rewind the write pointer

LBA space divided into sequentially written ranges

Sequential Write Required

you: how to map workload onto zones,
disk: manage parallelism best possible 

successor:

one level of control on device.
(not as good as open-channel)

30s



NVMe: Block and Zoned namespaces

11.11.2020 · 56

https://nvmexpress.org/new-nvmetm-specification-defines-zoned-namespaces-zns-as-go-to-industry-technology/

30s



1. File System
• How are I/Os exposed to programmers?

• How are I/Os handled on the host?

2. Storage devices
• What does a disk controller do?

• How do hosts interact with disk controllers?

• How does a disk controller perform a DMA?

3. Computational Storage

Outline

11.11.2020 · 57

conventional SSD: a lot of complexity 
on device; gets in way of host.
open-channel: host did too much work.
ZNS is a compromise, still not perfect. 

idea: you should be able to program your SSDs.



58

Computational Storage

Computational storage = Computation on the IO Path



59

Computational storage https://www.youtube.com/watch?v=3CeOIY1PO-Y

Specialized storage interface + functionality offload

storage industry has defined an architecture for 
computational storage. NVMe will be standard.



Communication Abstraction

11.11.2020 · 60

Source: Saltzer and Kaashoek

Communication Link
SEND(link_name, outgoing_message_buffer)

RECEIVE(link_name, incoming_message_buffer)

what we get to… is a communication abstraction.
not just blocks, but e.g. 8MB object, transactions, …



File abstraction is one of Unix enduring contribution. Beautiful 
example of a deep module. You should be able to describe the 
data structures and name mapping steps involved in file system 
operations.

NVMe as host/storage interface. NVMe manages 
completion/submission queues. NVMe namespaces include 
block device and zones.

With computational storage, storage devices are moving from a 
memory to a communication abstraction.  

Take-Aways

11.11.2020 · 61


