
Operating Systems and C
Fall 2022
10. Memory

Memory Abstraction

Source: Saltzer and Kaashoek

Associativity
Layer

Associativity
Layer

Location-
addressed
Memory

Location-
addressed
Memory

WRITE(name, value) WRITE(address, value)

READ(address)READ(name)

Associative Memory

recall fundamental abstractions
● interpreter during lecture 4
● memory today!
● communication at end of course

memory
API

Memory Abstraction

Source: Saltzer and Kaashoek

Associativity
Layer

Associativity
Layer

Location-
addressed
Memory

Location-
addressed
Memory

WRITE(name, value) WRITE(address, value)

READ(address)READ(name)

Associative Memory

recall fundamental abstractions
● interpreter during lecture 4
● memory today!
● communication at end of course

logical name physical address

memory
API

basically just a
 names → addresses
mapping

DRAM Market Shares geopolitics (10s):
three main manufacturers of memory.
(Samsung at ca. 50%, SK Hynix, Micron)

A System Using Physical Addressing

Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main
memory

CPU

2:
3:
4:
5:
6:
7:

Physical
address

(PA)

Data word

8: ...

4

address in a CPU request is
an actual, physical address.

(so, CPU only accesses physical memory.
might be on-chip, might be external)

pro: cheaper… (less chips)
con: caching?

protection? (each proc full access)

manage? (control where/how stored)

 (performance & security)

a level of indirection is useful
(gives us options).

A System Using Virtual Addressing

Used in all modern servers, desktops, and laptops
One of the great ideas in computer science

0:
1:

M-1:

Main
memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

MMU: Memory Management Unit

level of indirection: maps
virtual addresses to
physical addresses.

MMU can do some key
clever things. this lecture
walks through that.

An address space is an ordered set of contiguous
addresses (non-negative integers)

Physical address space associated to RAM⇒

Virtual address space associated to each ⇒ process

Address Space 10s

from point of view of process,
it has access to
whole memory, and that
memory belongs to it.
in actuality, it has access to
parts of memory, some shared
w/ other processes.

• Uses main memory efficiently performance
• Use DRAM as a cache for the parts of a virtual address space

• Simplifies memory management
• Each process gets the same uniform linear address space

(from 0 and up)

• Isolates address spaces security
• One process can’t interfere with another’s memory
• User program cannot access privileged kernel information

Virtual Memory what does virtual memory
give us? (i.e. why VM?)

VM is a Tool for Caching

Virtual memory is an array of N contiguous bytes stored on disk.
The contents of the array on disk are cached in physical memory (DRAM cache)

These cache blocks are called pages (size (quanta) P = 2p bytes)

Unit of transfer between disk & virtual memory

PP 2m-p-1

Physical
memory

Empty

Empty

Uncached

VP
0VP
1

VP 2n-p-1

Virtual
memory
Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP
0PP
1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

(i.e. for organizing how
 physical memory is used)

Q: how much VM
can we have?
A: CPU issues
address requests.
VM size bounded by
CPU word size

4k, 8k, 16k
VM thus = a
collection of pages

VM is a Tool for Caching

Virtual memory is an array of N contiguous bytes stored on disk.
The contents of the array on disk are cached in physical memory (DRAM cache)

These cache blocks are called pages (size (quanta) P = 2p bytes)

Unit of transfer between disk & virtual memory

PP 2m-p-1

Physical
memory

Empty

Empty

Uncached

VP
0VP
1

VP 2n-p-1

Virtual
memory
Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP
0PP
1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

(i.e. for organizing how
 physical memory is used)

Q: how much VM
can we have?
A: CPU issues
address requests.
VM size bounded by
CPU word size

4k, 8k, 16k
VM thus = a
collection of pages

VM is a Tool for Caching

Virtual memory is an array of N contiguous bytes stored on disk.
The contents of the array on disk are cached in physical memory (DRAM cache)

These cache blocks are called pages (size (quanta) P = 2p bytes)

Unit of transfer between disk & virtual memory

PP 2m-p-1

Physical
memory

Empty

Empty

Uncached

VP
0VP
1

VP 2n-p-1

Virtual
memory
Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP
0PP
1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

today, address space size:
 virtual mem physical ≫
mem
VM creates illusion (to proc) of
more memory, using caching.

physical address extension
(PAE): MMU “hack” enabling
more than 2^32 physical mem
despite CPU being 32-bit

history;
2 GB limit

level of indirection
creates opportunities!

(i.e. for organizing how
 physical memory is used)

Q: how much VM
can we have?
A: CPU issues
address requests.
VM size bounded by
CPU word size

when you run out of
memory, you don’t
run out of
addresses, but
actual phys mem

4k, 8k, 16k
VM thus = a
collection of pages

DRAM Cache Organization

DRAM cache organization driven by the enormous miss penalty

DRAM is about 10x slower than SRAM

Disk is about 10,000x slower than DRAM

Consequences:

Large page (block) size: typically 4-8 KB, sometimes 4 MB

Fully associative

• Any VP can be placed in any PP

• Need a “large” mapping function – different from CPU caches

Highly sophisticated, expensive replacement algorithms

• Too complicated and open-ended to be implemented in hardware

Write-back rather than write-through

DRAM for phys. mem,
SRAM for registers

Cannot use the (simple)
mechanism we saw in
performance-track
(CPU cache)solution: page table (next slide)

Page Tables

A page table is an array of page table entries (PTEs) that maps
virtual pages to physical pages. Per-process kernel data
structure in DRAM

null

null

Memory
resident

page table
(DRAM)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

serves as our
virt-phys address mapping

Page Tables

A page table is an array of page table entries (PTEs) that maps
virtual pages to physical pages. Per-process kernel data
structure in DRAM

null

null

Memory
resident

page table
(DRAM)

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7 VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

serves as our
virt-phys address mapping

Page Tables

A page table is an array of page table entries (PTEs) that maps
virtual pages to physical pages. Per-process kernel data
structure in DRAM

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 4

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

serves as our
virt-phys address mapping

Page Tables

A page table is an array of page table entries (PTEs) that maps
virtual pages to physical pages. Per-process kernel data
structure in DRAM

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 4

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

serves as our
virt-phys address mapping

VM creates illusion (to
proc) that data is
always in DRAM. but
in practice, there isn’t
space for all VM there.
hence DRAM is
cache.

Page Hit

Page hit: reference to VM word that is in
physical memory (DRAM cache hit)

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 4

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

MMU gets address (virtual),
looks up page table…

return addr of page in DRAM

Page Hit

Page hit: reference to VM word that is in
physical memory (DRAM cache hit)

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 4

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

MMU gets address (virtual),
looks up page table…

return addr of page in DRAM

Page Fault

Page fault: reference to VM word that is not in
physical memory (DRAM cache miss)

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 4

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

what happens on a miss?
(bring the page to the cache)
implemented w/ exceptions.

Page Fault

Page fault: reference to VM word that is not in
physical memory (DRAM cache miss)

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 4

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

what happens on a miss?
(bring the page to the cache)
implemented w/ exceptions.

Handling Page Fault

Page miss causes page fault (an exception)

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 4

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 4

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

(flip forth)

Handling Page Fault

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 3

(disk
)

Valid
0

1

1
0

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

(flip back)

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Handling Page Fault

null

null

Memory
resident

page table
(DRAM)

Physical
memory
(DRAM)

VP 7
VP 3

(disk
)

Valid
0

1

1
0

0

1

0

1

Physical
page

number or
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)
Offending instruction is restarted: page hit!

this mechanism is making sure to bring
data that process needs, to DRAM.

page fault is generated by hardware, but
handled by the OS

(how: exception control given to OS)⇒

Locality to the Rescue Again!

Virtual memory works because of locality

At any point in time, programs tend to access a set of active virtual
pages called the working set

Programs with better temporal locality will have smaller working sets

If (working set size < main memory size)
Good performance for one process after compulsory misses

If (SUM(working set sizes) > main memory size)
Thrashing: Performance meltdown where pages are swapped (copied) in and

out continuously (to/from disk; “swapping”; slooow)
you can literally hear this in mechanical
hard drives; a “grinding” sound

performance-part done (caching, page
table & fault). next part: security

VM as a Tool for Memory Management

Key idea: each process has its own virtual address space
It can view memory as a simple linear array

Mapping function scatters addresses through physical memory

Well chosen mappings simplify memory allocation and management

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

protection

might have same
structure (e.g. multiple
instances of same
program),
but stored differently in
physical memory

VM as a Tool for Memory Management

Memory allocation
Each virtual page can be mapped to any physical page

A virtual page can be stored in different physical pages at different times
Sharing code and data among processes

Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

locality:
you want, as much as
possible, to have
contiguous VM pages
mapped to
contiguous PM pages.
(but not too much;
inefficient cache use)

e.g. shared library

Shared Memory in Linux

Shared Memory Segment Memory Mapped Segment/File
https://stackoverflow.com/questions/5656530/how-to-use-shared-memory-with-linux-in-c

Linux default: no sharing
between processes. if you
want sharing (shared
memory), then you have
to work for it.
there are primitives in the
C std lib for this.

10s

old UNIX way of sharing
between processes.

like VP2/PP6 before
fork; child shares
mem w/ parent

Simplifying Linking and Loading

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

here is where
shared stuff is
stored

Simplifying Linking and Loading

Linking
Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

here is where
shared stuff is
stored

Simplifying Linking and Loading

Linking
Each program has similar virtual address space

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

here is where
shared stuff is
stored

Simplifying Linking and Loading

Linking
Each program has similar virtual address space

Code, stack, and shared libraries always start at
the same address

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

here is where
shared stuff is
stored

Simplifying Linking and Loading

Linking
Each program has similar virtual address space

Code, stack, and shared libraries always start at
the same address

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

here is where
shared stuff is
stored

Simplifying Linking and Loading

Linking
Each program has similar virtual address space

Code, stack, and shared libraries always start at
the same address

Loading

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

here is where
shared stuff is
stored

Simplifying Linking and Loading

Linking
Each program has similar virtual address space

Code, stack, and shared libraries always start at
the same address

Loading
execve() allocates virtual pages for .text and

.data sections
= creates PTEs marked as invalid

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

here is where
shared stuff is
stored

Simplifying Linking and Loading

Linking
Each program has similar virtual address space

Code, stack, and shared libraries always start at
the same address

Loading
execve() allocates virtual pages for .text and

.data sections
= creates PTEs marked as invalid

The .text and .data sections are copied,
page by page, on demand by the virtual
memory system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

here is where
shared stuff is
stored

Simplifying Linking and Loading

Linking
Each program has similar virtual address space

Code, stack, and shared libraries always start at
the same address

Loading
execve() allocates virtual pages for .text and

.data sections
= creates PTEs marked as invalid

The .text and .data sections are copied,
page by page, on demand by the virtual
memory system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

here is where
shared stuff is
stored

VM as a Tool for Memory Protection

Extend PTEs with permission bits

Page fault handler checks these bits before remapping
If violated, send process SIGSEGV (segmentation fault)

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

page table entries

(virt into phys)

now MMU can check whether proc has
access to region in mem!

(each process, and each address, is either
 user-mode or supervisor-mode.
 user-mode proc attempts access to
 supervisor-mode address exception.)⇒

kernel-space / user-space

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

example now where we
go through the whole
translation.

(1) pointer to
page table
in memory

(2) given a virt addr., part of it will be
virt. page number (idx to page table)

(remember, byte-addressable)

(3) check if in
DRAM or on disk

(4) MMU does the
mapping

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
Memory

CPU
VA

CPU Chip
1

very flexible mechanism!
but, if we are not careful,
then we have 2 accesses to
DRAM for each VA.
(how to optimize that? hold
that thought)

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE
1

2

3

very flexible mechanism!
but, if we are not careful,
then we have 2 accesses to
DRAM for each VA.
(how to optimize that? hold
that thought)

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

CPU
VA

CPU Chip PTEA

PTE
1

2

3

4

very flexible mechanism!
but, if we are not careful,
then we have 2 accesses to
DRAM for each VA.
(how to optimize that? hold
that thought)

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip PTEA

PTE
1

2

3

4

5

very flexible mechanism!
but, if we are not careful,
then we have 2 accesses to
DRAM for each VA.
(how to optimize that? hold
that thought)

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception (page not in DRAM)

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE

1

2

3
Disk

costly operation

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception (page not in DRAM)

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE

1

2

3

4

Disk

Page fault handler
Exception

costly operation

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception (page not in DRAM)

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

Exception

costly operation

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception (page not in DRAM)

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

costly operation

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception (page not in DRAM)

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

costly operation

Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA
hit

PA
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

reality is different 😈
between CPU and DRAM,
we have caches.

the further from CPU,
the more CPU must wait
(nanoseconds to 100s of microseconds)

Speeding up Translation with a TLB

Page table entries (PTEs) are cached in L1 like any other
memory word
PTEs may be evicted by other data references

PTE hit still requires a small L1 delay.

Solution: Translation Lookaside Buffer (TLB)
Small hardware cache in MMU

Maps virtual page numbers to physical page numbers

Contains complete page table entries for small number of pages

we don’t want to pollute the L1
cache w/ PTEs

Speeding up Translation with a TLB

Page table entries (PTEs) are cached in L1 like any other
memory word
PTEs may be evicted by other data references

PTE hit still requires a small L1 delay.

Solution: Translation Lookaside Buffer (TLB)
Small hardware cache in MMU

Maps virtual page numbers to physical page numbers

Contains complete page table entries for small number of pages

we don’t want to pollute the L1
cache w/ PTEs

TLB Hit

MMU
Cache/
Memory

CPU
VA

CPU Chip

1

2

A TLB hit eliminates a memory access

TLB

VPN

nice and fast :-)

TLB Hit

MMU
Cache/
Memory

CPU
VA

CPU Chip

PTE

1

2

A TLB hit eliminates a memory access

TLB

VPN 3

nice and fast :-)

TLB Hit

MMU
Cache/
Memory

PA
CPU

VA

CPU Chip

PTE

1

2

4

A TLB hit eliminates a memory access

TLB

VPN 3

nice and fast :-)

TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

nice and fast :-)

TLB Miss

MMU
Cache/
Memory

CPU
VA

CPU Chip

1

2

TLB

VPN

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

TLB Miss

MMU
Cache/
Memory

CPU
VA

CPU Chip

1

2

TLB

VPN

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

TLB Miss

MMU
Cache/
Memory

CPU
VA

CPU Chip

PTE

1

2

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

TLB Miss

MMU
Cache/
MemoryPA

CPU
VA

CPU Chip

PTE

1

2

5

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

TLB misses are rare! why: locality.

a way to quantify performance of
your program is to monitor nr. of
TLB misses. add locality to reduce.

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memoryMain memory

RegistersRegisters

L1 d-TLB
64 entries, 4-way

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

MMU
(addr translation)

Instruction
fetch

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores

To I/O
bridge

concrete example (20s)

You should be able to describe:
• Address Space
• Physical and Virtual Memory
• MMU (its role, how work split between it and OS)
• Pages
• Page Table
• Translation Lookaside Buffer (TLB)

Virtual Memory as a tool for caching, memory
management and memory protection.

Take-Aways

performance and security!remaining lectures not about assignments, or programming (you should
be done w/ LCTHW). but related to what I can, and will, ask at the exam.

	Operating Systems and C Fall 2022 10. Memory
	Memory Abstraction (1)
	Memory Abstraction (2)
	DRAM Market Shares
	A System Using Physical Addressing
	A System Using Virtual Addressing
	Address Space
	Virtual Memory
	VM is a Tool for Caching (1)
	VM is a Tool for Caching (2)
	VM is a Tool for Caching (3)
	DRAM Cache Organization
	Page Tables (1)
	Page Tables (2)
	Page Tables (3)
	Page Tables (4)
	Page Hit (1)
	Page Hit (2)
	Page Fault (1)
	Page Fault (2)
	Handling Page Fault
	Handling Page Fault
	Handling Page Fault
	Handling Page Fault
	Locality to the Rescue Again!
	VM as a Tool for Memory Management
	VM as a Tool for Memory Management
	Shared Memory in Linux
	Simplifying Linking and Loading (1)
	Simplifying Linking and Loading (2)
	Simplifying Linking and Loading (3)
	Simplifying Linking and Loading (4)
	Simplifying Linking and Loading (5)
	Simplifying Linking and Loading (6)
	Simplifying Linking and Loading (7)
	Simplifying Linking and Loading (8)
	Simplifying Linking and Loading (9)
	VM as a Tool for Memory Protection
	Address Translation With a Page Table
	Address Translation: Page Hit (1)
	Address Translation: Page Hit (2)
	Address Translation: Page Hit (3)
	Address Translation: Page Hit (4)
	Address Translation: Page Fault (1)
	Address Translation: Page Fault (2)
	Address Translation: Page Fault (3)
	Address Translation: Page Fault (4)
	Address Translation: Page Fault (5)
	Integrating VM and Cache
	Speeding up Translation with a TLB (1)
	Speeding up Translation with a TLB (2)
	TLB Hit (1)
	TLB Hit (2)
	TLB Hit (3)
	TLB Hit (4)
	TLB Miss (1)
	TLB Miss (2)
	TLB Miss (3)
	TLB Miss (4)
	TLB Miss (5)
	TLB Miss (6)
	Intel Core i7 Memory System
	Take-Aways

