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DRAM Market Shares geopolitics (10s):
three main manufacturers of memory.
(Samsung at ca. 50%, SK Hynix, Micron)



A System Using Physical Addressing

Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main 
memory

CPU

2:
3:
4:
5:
6:
7:

Physical 
address

(PA)

Data word

8: ...

4

address in a CPU request is
an actual, physical address.

(so, CPU only accesses physical memory. 
might be on-chip, might be external)

pro:  cheaper… (less chips)
con: caching?

protection? (each proc full access)

manage? (control where/how stored)

              (performance & security)

a level of indirection is useful 
(gives us options).



A System Using Virtual Addressing

Used in all modern servers, desktops, and laptops
One of the great ideas in computer science

0:
1:

M-1:

Main 
memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

MMU: Memory Management Unit

level of indirection: maps 
virtual addresses to 
physical addresses.

MMU can do some key 
clever things. this lecture 
walks through that.



An address space is an ordered set of contiguous 
addresses (non-negative integers)

Physical address space  associated to RAM⇒

Virtual address space  associated to each ⇒ process

Address Space 10s

from point of view of process, 
it has access to
whole memory, and that 
memory belongs to it.
in actuality, it has access to
parts of memory, some shared 
w/ other processes.



• Uses main memory efficiently performance
• Use DRAM as a cache for the parts of a virtual address space

• Simplifies memory management
• Each process gets the same uniform linear address space

(from 0 and up)

• Isolates address spaces security
• One process can’t interfere with another’s memory
• User program cannot access privileged kernel information

Virtual Memory what does virtual memory 
give us? (i.e. why VM?)



VM is a Tool for Caching

Virtual memory is an array of N contiguous bytes stored on disk. 
The contents of the array on disk are cached in physical memory (DRAM cache)

These cache blocks are called pages (size (quanta) P = 2p bytes)

Unit of transfer between disk & virtual memory

PP 2m-p-1

Physical 
memory

Empty

Empty

Uncached
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0VP 
1
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Uncached

PP 
0PP 
1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs) 
stored on disk

Physical pages (PPs) 
cached in DRAM

(i.e. for organizing how 
 physical memory is used)

Q: how much VM 
can we have?
A: CPU issues 
address requests.
VM size bounded by 
CPU word size

4k, 8k, 16k
VM thus = a 
collection of pages
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VM is a Tool for Caching

Virtual memory is an array of N contiguous bytes stored on disk. 
The contents of the array on disk are cached in physical memory (DRAM cache)

These cache blocks are called pages (size (quanta) P = 2p bytes)

Unit of transfer between disk & virtual memory
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1
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Unallocated

Cached

Uncached
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Uncached

PP 
0PP 
1

Empty
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0
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Virtual pages (VPs) 
stored on disk

Physical pages (PPs) 
cached in DRAM

today, address space size:
    virtual mem  physical ≫
mem
VM creates illusion (to proc) of 
more memory, using caching.

physical address extension
(PAE): MMU “hack” enabling 
more than 2^32 physical mem 
despite CPU being 32-bit

history; 
2 GB limit

level of indirection
creates opportunities!

(i.e. for organizing how 
 physical memory is used)

Q: how much VM 
can we have?
A: CPU issues 
address requests.
VM size bounded by 
CPU word size

when you run out of 
memory, you don’t 
run out of 
addresses, but 
actual phys mem

4k, 8k, 16k
VM thus = a 
collection of pages



DRAM Cache Organization

DRAM cache organization driven by the enormous miss penalty

DRAM is about 10x slower than SRAM

Disk is about 10,000x slower than DRAM

Consequences:

Large page (block) size: typically 4-8 KB, sometimes 4 MB

Fully associative 

• Any VP can be placed in any PP

• Need a “large” mapping function – different from CPU caches

Highly sophisticated, expensive replacement algorithms

• Too complicated and open-ended to be implemented in hardware

Write-back rather than write-through

DRAM for phys. mem,
SRAM for registers

Cannot use the (simple) 
mechanism we saw in 
performance-track 
(CPU cache)solution: page table (next slide)



Page Tables

A page table is an array of page table entries (PTEs) that maps 
virtual pages to physical pages. Per-process kernel data 
structure in DRAM

null
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resident

page table
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Valid
0

1

0
1

0

1

0

1

Physical 
page

number or 
disk address

PTE 0

PTE 7

serves as our 
virt-phys address mapping
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Page Tables

A page table is an array of page table entries (PTEs) that maps 
virtual pages to physical pages. Per-process kernel data 
structure in DRAM
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Page Tables

A page table is an array of page table entries (PTEs) that maps 
virtual pages to physical pages. Per-process kernel data 
structure in DRAM
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VM creates illusion (to 
proc) that data is 
always in DRAM. but 
in practice, there isn’t 
space for all VM there. 
hence DRAM is 
cache.



Page Hit

Page hit: reference to VM word that is in 
physical memory (DRAM cache hit)

null

null

Memory 
resident

page table
(DRAM)

Physical 
memory
(DRAM)

VP 7
VP 4

(disk
)

Valid
0

1

0
1

0

1

0

1

Physical 
page

number or 
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

MMU gets address (virtual), 
looks up page table…

return addr of page in DRAM



Page Hit

Page hit: reference to VM word that is in 
physical memory (DRAM cache hit)
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return addr of page in DRAM



Page Fault

Page fault: reference to VM word that is not in 
physical memory (DRAM cache miss)
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what happens on a miss?
(bring the page to the cache)
implemented w/ exceptions.
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Handling Page Fault

Page miss causes page fault (an exception)
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Handling Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)
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(flip forth)



Handling Page Fault

null

null

Memory 
resident

page table
(DRAM)

Physical 
memory
(DRAM)

VP 7
VP 3

(disk
)

Valid
0

1

1
0

0

1

0

1

Physical 
page

number or 
disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

(flip back)

Page miss causes page fault (an exception)
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Handling Page Fault

null

null

Memory 
resident

page table
(DRAM)

Physical 
memory
(DRAM)

VP 7
VP 3

(disk
)

Valid
0

1

1
0

0

1
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page

number or 
disk address

PTE 0

PTE 7

PP 0
VP 2
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PP 3
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Virtual address

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)
Offending instruction is restarted: page hit!

this mechanism is making sure to bring 
data that process needs, to DRAM.

page fault is generated by hardware, but 
handled by the OS

(how: exception  control given to OS)⇒



Locality to the Rescue Again!

Virtual memory works because of locality

At any point in time, programs tend to access a set of active virtual 
pages called the working set

Programs with better temporal locality will have smaller working sets

If (working set size < main memory size) 
Good performance for one process after compulsory misses

If ( SUM(working set sizes) > main memory size ) 
Thrashing: Performance meltdown where pages are swapped (copied) in and 

out continuously (to/from disk; “swapping”; slooow)
you can literally hear this in mechanical 
hard drives; a “grinding” sound

performance-part done (caching, page 
table & fault). next part: security



VM as a Tool for Memory Management

Key idea: each process has its own virtual address space
It can view memory as a simple linear array

Mapping function scatters addresses through physical memory

Well chosen mappings simplify memory allocation and management

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation

protection

might have same 
structure (e.g. multiple 
instances of same 
program), 
but stored differently in 
physical memory



VM as a Tool for Memory Management

Memory allocation
Each virtual page can be mapped to any physical page

A virtual page can be stored in different physical pages at different times
Sharing code and data among processes

Map virtual pages to the same physical page (here: PP 6)

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation

locality:
you want, as much as 
possible, to have 
contiguous VM pages 
mapped to 
contiguous PM pages.
(but not too much; 
inefficient cache use)

e.g. shared library



Shared Memory in Linux

Shared Memory Segment Memory Mapped Segment/File
https://stackoverflow.com/questions/5656530/how-to-use-shared-memory-with-linux-in-c

Linux default: no sharing 
between processes. if you 
want sharing (shared 
memory), then you have 
to work for it.
there are primitives in the 
C std lib for this.

10s

old UNIX way of sharing 
between processes.

like VP2/PP6 before
fork; child shares 
mem w/ parent



Simplifying Linking and Loading

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp 
(stack 
pointer)

Memory
invisible 
to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file

here is where 
shared stuff is 
stored
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VM as a Tool for Memory Protection

Extend PTEs with permission bits

Page fault handler checks these bits before remapping
If violated, send process SIGSEGV (segmentation fault)

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical 
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

page table entries

(virt into phys)

now MMU can check whether proc has 
access to region in mem!

(each process, and each address, is either
 user-mode or supervisor-mode.
 user-mode proc attempts access to
 supervisor-mode address  exception.)⇒

kernel-space / user-space



Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table 
base register

(PTBR)

Page table Page table address 
for process

Valid bit = 0:
page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

example now where we 
go through the whole 
translation.

(1) pointer to 
page table 
in memory

(2) given a virt addr., part of it will be 
virt. page number (idx to page table)

(remember, byte-addressable)

(3) check if in 
DRAM or on disk

(4) MMU does the 
mapping



Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
Memory

CPU
VA

CPU Chip
1

very flexible mechanism!
but, if we are not careful,
then we have 2 accesses to 
DRAM for each VA.
(how to optimize that? hold 
that thought)
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip PTEA

PTE
1

2

3

4

5

very flexible mechanism!
but, if we are not careful,
then we have 2 accesses to 
DRAM for each VA.
(how to optimize that? hold 
that thought)



Address Translation: Page Fault

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception (page not in DRAM)

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE

1

2

3
Disk

costly operation



Address Translation: Page Fault

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception (page not in DRAM)

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE

1

2

3

4

Disk

Page fault handler
Exception
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception (page not in DRAM)

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

costly operation



Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA 
hit

PA 
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

reality is different 😈
between CPU and DRAM,
we have caches.

the further from CPU,
the more CPU must wait
(nanoseconds to 100s of microseconds)



Speeding up Translation with a TLB

Page table entries (PTEs) are cached in L1 like any other 
memory word
PTEs may be evicted by other data references

PTE hit still requires a small L1 delay.

Solution: Translation Lookaside Buffer (TLB)
Small hardware cache in MMU

Maps virtual page numbers to  physical page numbers

Contains complete page table entries for small number of pages

we don’t want to pollute the L1 
cache w/ PTEs
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MMU
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MemoryPA

Data

CPU
VA
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TLB
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A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

TLB misses are rare! why: locality.

a way to quantify performance of 
your program is to monitor nr. of 
TLB misses. add locality to reduce.



Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way 

(shared by all cores)

L3 unified cache
8 MB, 16-way 

(shared by all cores)

Main memoryMain memory

RegistersRegisters

L1 d-TLB
64 entries, 4-way

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2  unified TLB
512 entries, 4-way

L2  unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

L1 i-cache
32 KB, 8-way

MMU 
(addr translation)

MMU 
(addr translation)

Instruction
fetch

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

QuickPath interconnect
4 links @ 25.6 GB/s each

To other 
cores

To I/O
bridge

concrete example (20s)



You should be able to describe:
• Address Space
• Physical and Virtual Memory
• MMU (its role, how work split between it and OS)
• Pages
• Page Table
• Translation Lookaside Buffer (TLB)

Virtual Memory as a tool for caching, memory 
management and memory protection.

Take-Aways 

performance and security!remaining lectures not about assignments, or programming (you should 
be done w/ LCTHW). but related to what I can, and will, ask at the exam.
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