
Operating Systems and C
Fall 2022
9. Heap

Slides from CSAPP3e

Virtual Memory

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data

Read-only code and data

Loaded from the
hello executable file

printf function

Program
start

Each process has a view
of virtual memory - its
own address space.

All address spaces
are structured in the
same way.

Programmers use dynamic
memory allocators (such as
malloc) to acquire VM at
run time.

For data structures whose size
is only known at runtime.

Dynamic memory allocators
manage an area of process
virtual memory known as the
heap.

Dynamic Memory Allocation

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data

Read-only code and data

Loaded from the
hello executable file

printf function

Program
start

today, we talk about the heap.
used for dynamic memory allocation

in C: data structures known
statically (compile time) in RO & RW
run time in heap.

Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
Types of allocators

Explicit allocator: application allocates and frees space

e.g., malloc and free in C

Implicit allocator: application allocates, but does not free space

e.g. garbage collection in Java, ML, and Lisp

In C, we deal with explicit memory allocation.

Dynamic Memory Allocation
in every PL, you have
memory allocators.

a key feature of C

malloc-lab (SWU, SD): you’ll implement what’s needed for malloc and free!

#include <stdlib.h>

void *malloc(size_t size)

Successful:

Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

If size == 0, returns NULL

Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

Returns the block pointed at by p to pool of available memory

p must come from a previous call to malloc or realloc

Other functions:

calloc: Version of malloc that initializes allocated block to zero.

realloc: Changes the size of a previously allocated block.

sbrk: Used internally by allocators to grow or shrink the heap

The malloc Package

you use malloc to allocate space.
then you cast that space to either
struct or some basic type

malloc never does
anything to the content of
the blocks unless you use
something like this.

Aligned malloc

void* aligned_alloc(size_t alignment, size_t size)
allocates a block of size bytes whose address is a multiple of alignment.
The alignment must be a power of two and size must be a multiple of
alignment.

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

By default malloc is word aligned: 4B on 32 bits machine,
8B on 64 bits machines.
The space allocated is a multiple of word size.

cos

going to be an issue on 64-bit machines

malloc Example

void foo(int n, int m) {
 int i, *p;

 /* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {
 perror("malloc");
 exit(0);
 }

 /* Initialize allocated block */
 for (i=0; i<n; i++)
 p[i] = i;

 /* Return p to the heap */
 free(p);
}

we want to allocate a space
where p is going to be stored.

p only declared;
no memory allocated yet

we allocated enough space for
this to behave as intended.

n * sizeof(int)

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

we have a big hole now;
we cannot “compact”;
allocator cannot do that.

Applications
Can issue arbitrary sequence of malloc and free requests

free request must be to a malloc’d block

Allocators
Can’t control number or size of allocated blocks

Must respond immediately to malloc requests

i.e., can’t reorder or buffer requests

Must allocate blocks from free memory

i.e., can only place allocated blocks in free memory

Must align blocks so they satisfy all alignment requirements

8B alignment for GNU malloc (libc malloc) generally

Can manipulate and modify only free memory

Can’t move the allocated blocks once they are malloc’d

i.e., compaction is not allowed

Constraints
allocator must deal with any
malloc & free request
(can be any size any time)

Given some sequence of malloc and free requests:
 R

0
, R

1
, ..., R

k
, ... , R

n-1

Goals: maximize throughput, and peak memory utilization
These goals are often conflicting

Throughput:
Number of completed requests per unit of time

Example:

5,000 malloc calls and 5,000 free calls in 10 seconds

Throughput is 1,000 operations/second

Performance Goal: Throughput
we are basically going through
the first part of what malloc-lab
is about.

Given some sequence of malloc and free requests:
 R

0
, R

1
, ..., R

k
, ... , R

n-1

Def: Aggregate payload P
k

 malloc(p) results in a block with a payload of p bytes
After request R

k
has completed, the aggregate payload P

k
is the sum of

currently allocated payloads

Def: Current heap size H
k

Assume H
k
 is monotonically nondecreasing

i.e., heap only grows when allocator uses sbrk

Def: Peak memory utilization after k requests
U

k
 = (max

i<k
 P

i
) / H

k

Performance Goal: Peak Memory Utilization

heap can grow,
but never shrinks.

Fragmentation

Poor memory utilization caused by fragmentation
internal fragmentation
external fragmentation

10s

For a given block, internal fragmentation occurs if payload is smaller than block size

Caused by

Overhead of maintaining heap data structures
Padding for alignment purposes
Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

Depends only on the pattern of previous requests

Thus, easy to plan for

Internal Fragmentation

Payload
Internal
fragmentation

Block

Internal
fragmentation

i.e. structure of heap
at the moment

(within a block)

Occurs when there is enough aggregate heap memory, but no
single free block is large enough

Depends on the pattern of future requests
Thus, difficult to plan for

External Fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

(outside blocks)

we have the space,
but fragmentation.

How do we know how much memory to free given just a
pointer?

How do we keep track of the free blocks?

What do we do with the extra space when allocating a structure
that is smaller than the free block it is placed in?

How do we pick a block to use for allocation -- many might fit?

How do we reinsert freed block?

Implementation Issues

allocator needs an internal data structure

allocator needs a policy for this

(you’ll be battling pointer arithmetic like crazy)

Knowing How Much to Free

Standard method
Keep the length of a block in the word preceding the block.

•This word is often called the header field or header

Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size data

5

can access this w/ p0 using
pointer arithmetic. might be block
size for next block,might be junk.

tip: free needs to do this

Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers

Method 3: Segregated free list
Different free lists for different size classes

Method 4: Blocks sorted by size
Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Keeping Track of Free Blocks

5 4 26

5 4 26

now we have to keep track of free
blocks. first method: implicit list.

finding a free block:
O(nr. of blocks)

finding a free block:
O(nr. of free blocks)

finding a free block:
O(nr. of free blocks)
we’ll get back to
these later

let’s look at method 1
and 2 in detail now.

For each block we need both size and allocation status (allocated/free)
Could store this information in two words: wasteful!

Standard trick
If blocks are aligned, some low-order address bits are always 0

Instead of storing an always-0 bit, use it as a allocated/free flag

When reading size word, must mask out this bit

Method 1: Implicit List

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

8-byte aligned;
last 3 bits of
(size of, & addr or)
all allocated blocks
are 0

mask is
1..1110 = -2

Detailed Implicit Free List Example

Start
of

heap

Double-word
Aligned (8B)

8/0 16/1 16/132/0 0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

16 bytes, allocated (1)

10s

First fit:
Search list from beginning, choose first free block that fits:

Can take linear time in total number of blocks (allocated and free)

In practice it can cause “splinters” at beginning of list

Next fit:
Like first fit, but search list starting where previous search finished

Should often be faster than first fit: avoids re-scanning unhelpful blocks

Some research suggests that fragmentation is worse

Best fit:
Search the list, choose the best free block: fits, with fewest bytes left over

Keeps fragments small—usually helps fragmentation

Will typically run slower than first fit

Implicit List: Finding a Free Block

p = start;
while ((p < end) && \\ not passed end
 ((*p & 1) || \\ already allocated

 (*p & -2) <= len))) \\ too small
 p = p + (*p & -2); \\ goto next block (word addressed)

advance pointer by size of
the block we are looking at

Allocating in a free block: splitting
Since allocated space might be smaller than free space,
we might want to split the block

Implicit List: Allocating in Free Block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in
remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

Simplest implementation:
Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

But can lead to “false fragmentation”

Implicit List: Freeing a Block

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Join (coalesce) with next/previous blocks, if they are free
Coalescing with next block

This helps us coalesce space when the next block is free.

What about when the previous block is free? (see “cases” in 2 slides)

Implicit List: Coalescing

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

Boundary tags [Knuth73]

Replicate size/allocated word at “bottom” (end) of free blocks

Allows us to traverse the “list” backwards, but requires extra space

Important and general technique!

Implicit List: Bidirectional Coalescing

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

m1 1

Constant Time Coalescing (Case 2)

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Placement policy:
First-fit, next-fit, best-fit, etc.
Trades off lower throughput for less fragmentation

Interesting observation: segregated free lists approximate a best fit placement policy
without having to search entire free list

Splitting policy:
When do we go ahead and split free blocks?
How much internal fragmentation are we willing to tolerate?

Coalescing policy:
Immediate coalescing: coalesce each time free is called
Deferred coalescing: try to improve performance of free by deferring coalescing until
needed. Examples:

Coalesce as you scan the free list for malloc
Coalesce when the amount of external fragmentation reaches some threshold

Summary of Key Allocator Policies

maintain array of free blocks;
see later

Implementation: very simple
Allocate cost:

linear time worst case
Free cost:

constant time worst case
▪even with coalescing

Memory usage:
will depend on placement policy
First-fit, next-fit or best-fit

Not used in practice for malloc/free because of linear-time allocation
▪used in many special purpose applications

However, the concepts of
splitting and boundary tag coalescing

are general to all allocators

Implicit Lists: Summary

Maintain list(s) of free blocks, not all blocks
The “next” free block could be anywhere

So we need to store forward/back pointers, not just sizes

Still need boundary tags for coalescing

Luckily we track only free blocks, so we can use payload area

Explicit Free Lists

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

because we might free a
block somewhere in the
middle of heap (and thus list)

• Logically:

• Physically: blocks can be in any order

Explicit Free Lists

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

(*)

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Insertion policy: Where in the free list do you put a newly freed block?
LIFO (last-in-first-out) policy

Insert freed block at the beginning of the free list

Pro: simple and constant time

Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy

Insert freed blocks so that free list blocks are always in address order:
 addr(prev) < addr(curr) < addr(next)

 Con: requires search

 Pro: studies suggest fragmentation is lower than LIFO

Freeing With Explicit Free Lists

Insert the freed block at the root of the list

Freeing With a LIFO Policy (Case 1)

free()

Root

Root

Before

After

conceptual graphic

Want to coalesce w/ previous block. Solution:
Take out predecessor block, coalesce both memory blocks, and
insert the new block at the root of the list

Freeing With a LIFO Policy (Case 2)

free()

Root

Root

Before

After

conceptual graphic

coalescing: contiguous blocks
free list: logically-contiguous blocks
consequence: coalescing function is
the same for expl. & impl. free lists. (*)

Take out successor block, coalesce both memory blocks and
insert the new block at the root of the list

Freeing With a LIFO Policy (Case 3)

free()

Root

Root

Before

After

conceptual graphic

Take out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Freeing With a LIFO Policy (Case 4)

free()

Root

Root

Before

After

conceptual graphic

Comparison to implicit list:
Allocate is linear time in number of free blocks instead of all blocks

Much faster when most of the memory is full

Slightly more complicated allocate and free since needs to take blocks
out of the list

Some extra space for the links (2 extra words needed for each block)

Does this increase internal fragmentation?

Most common use of linked lists is in conjunction with
segregated free lists

Keep multiple linked lists of different size classes, or possibly for different
types of objects

Explicit List Summary (quickly summarize)

Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers

Method 3: Segregated free list
Different free lists for different size classes

Method 4: Blocks sorted by size
Can use a balanced tree (e.g. Red-Black tree) with pointers within each free
block, and the length used as a key

Keeping Track of Free Blocks

5 4 26

5 4 26

Each size class of blocks has its own free list

Often have separate classes for each small size
For larger sizes: One class for each two-power size

Segregated List (Seglist) Allocators

1-2

3

4

5-8

9-inf

10s

Given an array of free lists, each one for some size class

To allocate a block of size n:
Search appropriate free list for block of size m > n
If an appropriate block is found:

Split block and place fragment on appropriate list (optional)
If no block is found, try next larger class
Repeat until block is found

If no block is found:
Request additional heap memory from OS (using sbrk())
Allocate block of n bytes from this new memory
Place remainder as a single free block in largest size class.

Seglist Allocator (quickly summarize)

To free a block:
Coalesce and place on appropriate list (optional)

Advantages of seglist allocators
Higher throughput

 log time for power-of-two size classes

Better memory utilization

First-fit search of segregated free list approximates a best-fit search
of entire heap.

Extreme case: Giving each block its own size class is equivalent to
best-fit.

Seglist Allocator (cont.)

D. Knuth, “The Art of Computer Programming”, 2nd
edition, Addison Wesley, 1973

The classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.

Comprehensive survey

Available from CS:APP student site (csapp.cs.cmu.edu)

More Info on Allocators

