
Operating Systems and C
8. Exceptional Control Flow

03.10.2022 · 1
© Ph. Bonnet 2020
© N. Hedam 2022

Preface: Why am I teaching this lecture?

03.10.2022 · 2

a) Willard is travelling.
b) Part of doing a PhD is learning how to teach.

• My “teaching course” was during a lockdown, meaning that my first
lecture was on Zoom L

• Zoom lectures are very different from physical lectures, so I
requested to teach a physical course.

• Since this is my first physical lecture, feedback (both good and bad) is
greatly appreciated.
• You can approach me after the lecture, send me an e-mail or

write on slack.

- Interrupt Handling
- Process Management
- Signals

Outline

03.10.2022 3

Interpreter Abstraction

03.10.2022 · 4

Source: Saltzer and Kaashoek

Instruction
repertoire

Memory

Instructions

Data

Retrieve next
instruction

Interpret
instruction

Interrupt
signal?

Change instruction
and environment

reference

Instruction
reference

Environment
reference

Yes

No

Interpreter
Instruction reference: where to find next instruction
Repertoire: set of actions associated to an instruction
Environment reference: where to find the current state
on which the interpreter should perform the actions of the
current instruction

• Low level Interrupt mechanisms
• Exceptions: change in control flow in response to a system event

(i.e., change in system state)
• Combination of hardware and OS software

• Higher level Interrupt mechanisms
• Process context switch
• Signals
• Nonlocal jumps: setjmp()/longjmp()
• Implemented by either:

• OS software (context switch and signals)
• C language runtime library (nonlocal jumps)

Low vs. High Level Interrupts

Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus

Bus interface

When the DMA transfer
completes, the disk controller
notifies the CPU with an
interrupt (i.e., asserts a
special “interrupt” pin on the
CPU)

Interruption event:
1. A device needs attention
2. The user program did something illegal
3. The user program asks the OS kernel for a service through a system call

In these cases, the flow of control is transferred
from the user program to the OS kernel.

Exceptional Control Flow

1

2
3

1

2

3

Asynchronous Events

• Caused by events external to the processor
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• I/O interrupts
– hitting Ctrl-C at the keyboard
– arrival of a packet from a network
– arrival of data from a disk

• Hard reset interrupt
– hitting the reset button

• Soft reset interrupt
– hitting Ctrl-Alt-Delete on a PC

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf

PCH: Platform Controller Hub

Managed in hardware

Asynchronous Events

03.10.2022 · 9

http://refspecs.linux-foundation.org/IA64-softdevman-vol2.pdf

Hardware hands it out
to software

Asynchronous Events: Exceptions

An exception is a transfer of control to the OS in response
to some event (i.e., change in processor state)

Examples:
div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

User Process OS

exception
exception processing
by exception handler

• return to I_current
• return to I_next
•abort

event I_current
I_next

Exception Handler & Interrupt Vector

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

0
1
2 ...

n-1

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

Managed in hardwareevent

First 32 slots in interrupt
vectors reserved (x86).
33-127: OS-defined
128 (0x80): system calls
129-255: OS-defined

Interrupt Vector

03.10.2022 · 12

arch/x86/include/asm/traps.h

Synchronous Events
• Caused by events that occur as a result of executing an instruction:

• Traps
– Intentional
– Examples: system calls, breakpoint traps, special instructions
– Returns control to “next” instruction
• Faults
– Unintentional but possibly recoverable
– Examples: page faults (recoverable), protection faults (unrecoverable), floating

point exceptions
– Either re-executes faulting (“current”) instruction or aborts
• Aborts
– unintentional and unrecoverable
– Examples: parity error, machine check
– Aborts current program

Trap Example: System call
• User calls: open(filename, options)
• Function open executes system call instruction int

• OS must find or create file, get it ready for reading or writing
• Returns integer file descriptor

0804d070 <__libc_open>:
. . .
804d082: cd 80 int $0x80
804d084: 5b pop %ebx
. . .

User Process OS

exception

open file
returns

int
pop

arch/x86/entry/syscalls/syscall_64.tbl

Fault Example: Page Fault

• User writes to memory location
• That portion (page) of user’s memory

is currently on disk

• Page handler must load page into physical memory
• Returns to faulting instruction
• Successful on second try

int a[1000];
main ()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Process OS

exception: page fault
Create page and
load into memoryreturns

movl

Abort Example: Invalid Memory Reference

Page handler detects invalid address
Sends SIGSEGV signal to user process
User process exits with “segmentation fault”

int a[1000];
main ()
{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process OS

exception: page fault

detect invalid address
movl

signal process

- Interrupt Handling
- Process Management
- Signals

Outline

03.10.2022 17

Processes

03.10.2022 · 18

https://www.gnu.org/software/libc/manual/html_node/Processes.html

Virtual Memory

03.10.2022 · 19

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data

Read-only code and data

Loaded from the
hello executable file

printf function

Program
start

Each process has its
own address space.

All address spaces
are structured in the
same way.

• Process creation/termination/control defined in
standard C library (unistd.h)

• Transferring the thread of control from one process
to another is called context switching. It is managed
by the OS kernel.

Processes

03.10.2022 · 20

Context Switching

Control flow passes from one process to another via a
context switch

Important: the kernel is not a separate process, but
rather runs as part of some user process

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch
Time

Processor modes:
• Supervisor vs. user modes: “Supervisor mode may

provide access to different peripherals, to memory
management hardware or to different memory address
spaces. It is also capable of interrupt enabling, disabling,
returning and loading of processor status.”

• Supervisor mode entered on system call (see slide 11)

Context Switching

03.10.2022 · 22

When a context switch is made the scheduler marks
the task as interruptible, saves the process's
task_struct and replaces the current tasks pointer with
a pointer to the new process's task_struct, marked as
running, restoring its memory access and register
context.

Context Switching

03.10.2022 · 23

Process context:
• 8KB / process in kernel space to store

process descriptor task_struct
(/linux/include/linux/sched.h).
State:

#define TASK_RUNNING 0
#define TASK_INTERRUPTIBLE 1
#define TASK_UNINTERRUPTIBLE 2
#define TASK_ZOMBIE 4
#define TASK_STOPPED 8

Process ID
+ virtual memory info, file system info,
open files, signal handlers, …

• The thread of execution thread_struct
(/linux/arch/x86/include/asm/processor.h)
PC, registers, Fault info,

Process State (kernel)

03.10.2022 · 24

Task’s kernel-stack
Task’s thread_struct

page-frame aligned

Task’s
process-descriptor

struct task_struct
8-KB

https://github.com/torvalds/linux/blob/master/include/linux/sched.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/processor.h

- Break!
- We’ll continue in 15 minutes.

Break!

03.10.2022 · 25

• Spawning process: fork()
• Terminating process: exit()
• Waiting for process: wait()
• Executing a program within a process: execve()

Process Management (libc)

03.10.2022 · 26

On cos: /usr/include/unistd.h

fork: Creating New Processes
int fork(void)

• creates a new process (child process) that is identical to the calling
process (parent process)

• returns 0 to the child process
• returns child’s pid to the parent process

Fork is interesting (and often confusing) because
it is called once but returns twice

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Understanding fork

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Process n

pid = m

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Child Process m

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid = 0

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

hello from parent hello from childWhich one is first?
No guarantee!

Fork Example #1

Parent and child both run same code
Distinguish parent from child by return value from fork

Start with same state, but each has private copy
Including shared output file descriptor
Relative ordering of their print statements undefined

void fork1()
{

int x = 1;
pid_t pid = fork();
if (pid == 0) {

printf("Child has x = %d\n", ++x);
} else {

printf("Parent has x = %d\n", --x);
}
printf("Bye from process %d with x = %d\n", getpid(), x);

}

Fork Example #2

Both parent and child can continue forking

void fork3()
{

printf("L0\n");
fork();
printf("L1\n");
fork();
printf("L2\n");
fork();
printf("Bye\n");

} L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

Fork Example #3

Both parent and child can continue forking

void fork4()
{

printf("L0\n");
if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {

printf("L2\n");
fork();

}
}
printf("Bye\n");

}

L0 L1

Bye

L2

Bye

Bye

Bye

exit: Ending a process

void exit(int status)
exits a process

• Normally return with status 0
atexit() registers functions to be executed upon

exit
void cleanup(void) {

printf("cleaning up\n");
}

void fork6() {
atexit(cleanup);
fork();
exit(0);

}

Zombies

• Idea
• When process terminates, still consumes system resources
– Various tables maintained by OS
• Called a “zombie”
– Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child
• Parent is given exit status information
• Kernel discards process

• What if parent doesn’t reap?
• If any parent terminates without reaping a child, then child will be reaped by

init process
• So, only need explicit reaping in long-running processes
– e.g., shells and servers

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639
[1] Terminated
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

Zombie
Example

ps shows child process as “defunct”

Killing parent allows child to be
reaped by init

void fork7()
{

if (fork() == 0) {
/* Child */
printf("Terminating Child, PID = %d\n",

getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
}

}

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps

linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Nonterminating
Child Example

Child process still active even though
parent has terminated

Must kill explicitly, or else will keep
running indefinitely

void fork8()
{

if (fork() == 0) {
/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1)

; /* Infinite loop */
} else {
printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

}
}

wait: Synchronizing with Children

int wait(int *child_status)
suspends current process until one of its children

terminates
return value is the pid of the child process that terminated
if child_status != NULL, then the object it points to

will be set to a status indicating why the child process
terminated

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");

}
else {

printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");
exit();

}

HP

HC Bye

CT Bye

wait() Example
If multiple children completed, will take in arbitrary order
Can use macros WIFEXITED and WEXITSTATUS to get information about exit

status
void fork10()
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
}

waitpid(): Waiting for a Specific Process

waitpid(pid, &status, options)
suspends current process until specific process terminates

void fork11()
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */
for (i = N-1; i >= 0; i--) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}

execve: Loading and Running Programs

int execve(
char *filename,
char *argv[],
char *envp[]

)
Loads and runs in current process:

Executable filename
With argument list argv
And environment variable list envp

Does not return (unless error)
Overwrites code, data, and stack

keeps pid, open files and signal context
Environment variables:

“name=value” strings
getenv and putenv

Null-terminated
env var strings

unused

Null-terminated
cmd line arg strings

envp[n] == NULL
envp[n-1]

envp[0]
…

Linker vars

argv[argc] == NULL
argv[argc-1]

argv[0]
…

envp

argc
argv

Stack bottom

Stack frame for
main Stack top

environ

execve Example

if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

envp[n] = NULL
envp[n-1]

envp[0]
…

argv[argc] = NULL
argv[argc-1]

argv[0]
…

“ls”
“-lt”
“/usr/include”

“USER=droh”
“PRINTER=iron”
“PWD=/usr/droh”

environ

argv

- Interrupt Handling
- Process Management
- Signals

Outline

03.10.2022 42

Signals
A signal is a small message that notifies a process that an event of

some type has occurred in the system
• akin to exceptions and interrupts
• sent from the kernel (sometimes at the request of another process) to a

process
• signal type is identified by small integer ID’s (1-30)
• only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Sending a Signal

• Kernel sends (delivers) a signal to a destination process
by updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as divide-by-zero

(SIGFPE) or the termination of a child process (SIGCHLD)
• Another process has invoked the kill system call to explicitly

request the kernel to send a signal to the destination process

Receiving a Signal

A destination process receives a signal. It is forced by the
kernel to react in some way to the delivery of the signal

Three possible ways to react:
Ignore the signal (do nothing)
Terminate the process (with optional core dump)
Catch the signal by executing a user-level function called signal

handler
Akin to a hardware exception handler being called in
response to an asynchronous interrupt

Signal Concepts

Kernel maintains pending and blocked bit vectors in
the context of each process
• pending: represents the set of pending signals
– Kernel sets bit k in pending when a signal of type k is

delivered
– Kernel clears bit k in pending when a signal of type k is

received
• blocked: represents the set of blocked signals
– Can be set and cleared by using the sigprocmask function

Sending Signals with /bin/kill Program

/bin/kill program sends
arbitrary signal to a process or
process group

Examples
/bin/kill –9 24818

Send SIGKILL to process 24818

/bin/kill –9 –24817
Send SIGKILL to every process in process group 24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Receiving Signals

Suppose kernel is returning from an exception handler and is ready to pass control to
process p

Kernel computes pnb = pending & ~blocked

The set of pending nonblocked signals for process p

If (pnb == 0)
Pass control to next instruction in the logical flow for p

Else
Choose least nonzero bit k in pnb and force process p to receive signal k
The receipt of the signal triggers some action by p
Repeat for all nonzero k in pnb
Pass control to next instruction in logical flow for p

Default Actions

Each signal type has a predefined default action, which
is one of:
The process terminates
The process terminates and dumps core
The process stops until restarted by a SIGCONT signal
The process ignores the signal

Installing Signal Handlers

The signal function modifies the default action associated with the receipt of signal
signum:
handler_t *signal(int signum, handler_t *handler)

Different values for handler:
SIG_IGN: ignore signals of type signum
SIG_DFL: revert to the default action on receipt of signals of type signum
Otherwise, handler is the address of a signal handler
• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal
• When the handler executes its return statement, control passes back to instruction

in the control flow of the process that was interrupted by receipt of the signal

Signal Handling Example
void int_handler(int sig) {

safe_printf("Process %d received signal %d\n", getpid(), sig);
exit(0);

}

void fork13() {
pid_t pid[N];
int i, child_status;
signal(SIGINT, int_handler);
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
while(1); /* child infinite loop

}
for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}
for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}

linux> ./forks 13
Killing process 25417
Killing process 25418
Killing process 25419
Killing process 25420
Killing process 25421
Process 25417 received signal 2
Process 25418 received signal 2
Process 25420 received signal 2
Process 25421 received signal 2
Process 25419 received signal 2
Child 25417 terminated with exit status 0
Child 25418 terminated with exit status 0
Child 25420 terminated with exit status 0
Child 25419 terminated with exit status 0
Child 25421 terminated with exit status 0
linux>

Motivation for processes

03.10.2022 · 53

a) Security
• You may want to isolate execution of parts of the program.

• If child process crashes, the control process is still running.

b) Performance
• With multiple processes you can split parts of the execution into

multiple CPUs.
• Important if you are working with large amount of data or long-

running processes.

An exception is a transfer of control to the OS in response to
some event (asynchronous vs. synchronous (trap, fault, abort)).

Process has own address space and thread of control. Libs
defines primitives for spawning/terminating processes, waiting
for processes and executing programs within a process. The
kernel takes care of context switching.

Hardware interrupts first handled in hardware then in software
(kernel) through interrupt vector. Signals as process-level
interrupt handling.

Take-Aways

03.10.2022 · 54

