
Operating Systems and C
7a. Linux Kernel Security

08.10.2020 · 1With slides from Hans Holmberg

• Context
• Kernel
• Community
• Loadable Modules
• Boot Process
• Key Concepts
• Linux Security Frameworks

Outline

08.10.2020 2

Linux First Announcement

08.10.2020 3

Why this course?

https://github.com/torvalds/linux

https://gcc.gnu.org/

Portable Operating System Interface

Goal: Common denominator for Unix systems

Collection of Specifications: Core services (processes,
signals, File system, Pipes, I/O, C Library), Real-time
extensions, Threads.

POSIX

08.10.2020 · 5

“GNU, which stands for Gnu's Not Unix, is the name
for the complete Unix-compatible software system
which I am writing so that I can give it away free to
everyone who can use it. Several other volunteers are
helping me. Contributions of time, money, programs
and equipment are greatly needed.”

GNU Manifesto
Richard Stallman, 1985

GNU

08.10.2020 · 6

https://www.gnu.org/gnu/manifesto.en.html

By 1991, the GNU ecosystem contained:
• A C compiler: gcc (1st version in 1987)
• A standard C library: glibc
• A text editor: Emacs

No full kernel implementation => Linux fixed that.

GNU/Linux

08.10.2020 · 7

• Linux is a Registered Trademark of Linus Torvalds.
• Mostly POSIX-compliant OS:

• Kernel: Monolithic OS kernel
• Linux Distribution: Kernel, GNU tools and libraries, package

management system, documentation, window system, window
manager, desktop environment
• E.g., Ubuntu, Red Hat, Gentoo, Arch Linux, Mint, …

• Android : Mobile OS
• Yocto: Templates, tools and methods to help you create custom

Linux-based systems for embedded and IOT products

Linux

08.10.2020 · 8

https://source.android.com/devices/architecture/kernel
https://www.yoctoproject.org/about/

Linux Today

08.10.2020 · 9

https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://www.linuxcounter.net/

https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://www.linuxcounter.net/

• Context
• Kernel
• Community
• Loadable Modules
• Boot Process
• Key Concepts
• Linux Security Frameworks

Outline

08.10.2020 10

Architecture

08.10.2020 · 11

CPU Modes

• 4 protection rings in X86_64
• Instructions at Ring X, not

available from Ring X+1
• Ring 0 is most privileged

• Accessible from Linux kernel
• Ring 3 is least priviledged

• Accessible from Linux user
space

Example privileged instructions:
HLT: Halt CPU till next interrupt.

INVLPG: Invalidate a page entry in the
translation look-aside buffer (TLB).

LIDT: Load Interrupt Descriptor Table.
MOV CR registers: load or store control
registers. In this case the MOV instruction (a
non-privileged instruction on its own) is
accessing a privileged register.

Modify IO privilege level

08.10.2020 · 12

• The OS kernel is started when the computer boots
• The OS kernel then manages all the computer’s

resources (processor, memory, I/O devices)
• The OS kernel partitions the memory into kernel

space (reserved to the kernel) and user space (all
applications)

• The OS kernel exposes an interface to user space
applications, the system calls.

OS Kernel

08.10.2020 · 13

• Debugging is hard
• Bugs bring the system down!

• No standard library (no libc, no headers)
• No libc support for threads, I/Os, data structures.
• Kernel-specific services

• No memory protection mechanism
• No high-level abstraction for floating points
• Small per-process fixed stack
• Preemptive tasks, asynchronous interrupts, supports for multi-processing (SMP)

• Synchronization and concurrency are hard to manage!
• Portability is of the essence

• Avoid undefined behavior!
• Endian-neutral, no assumptions about page/word size, …

Kernel

08.10.2020 · 14

• Available from kernel.org
• Several versions of the

kernel:
• Mainline (e.g., 5.9-rc8)

• Maintained by Linus Torvald, benevolent dictator
• Master tree, all new code is merged here

• Stable and longterm
• Maintained by Greg Kroah-Hartman and others
• Bug fixes and trivial support for new devices

• Next
• Maintained by Stephen Rothwell
• Staging ground for new code from the maintainers

Kernel Source Code

08.10.2020 · 15

http://kroah.com/log/blog/2018/08/24/what-stable-kernel-should-i-use

• Context
• Kernel
• Community
• Loadable Modules
• Boot Process
• Key Concepts
• Linux Security Frameworks

Outline

08.10.2020 16

Linux Kernel Community

08.10.2020 · 17

https://github.com/netoptimizer
Jesper Dangaard Brouer

Julia Lawall (INRIA, ex DIKU) - Jens Axboe (FB)
Coccinelle Block Layer (fio)

https://github.com/netoptimizer

Linux Kernel Community

08.10.2020 · 18

Hans Holmberg (WD)
Kernelteaching

https://lundlinuxcon.org/

Matias Bjørling (WD)
LightNVM

(Samsung)
pblk

Linux is under the responsibility of Linus Thorvald.

Linux is decomposed into subsystems, under the
responsibility of a maintainer (e.g., Jens Axboe for the
block layer)

Each maintainer is a gatekeeper for her subsystem
They manage their version of the source tree
Review/accept patches from developers
Send pull requests to Linus for patches that they think
should be merged into the mainline

Patch-Based Evolution

08.10.2020 · 19

https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://www.kernel.org/doc/html/v4.17/process/2.Process.html#the-big-picture

https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://www.kernel.org/doc/html/v4.17/process/2.Process.html

1. Git as a tool to represent diff

2. Describe changes

3. Make sure your code conforms to Linux coding style

4. Send patch to relevant reviewer (plain text)

5. Respond to comment from reviewer

6. Reviewer signs off your patch and forwards to maintainer

Submitting a Patch

08.10.2020 · 20

Linux Code of conduct

Code of Conflict

08.10.2020 · 21

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/CodeOfConflict?id=ddbd2b7ad99a418c60397901a0f3c997d030c65e
https://github.com/torvalds/linux/blob/master/Documentation/process/code-of-conduct.rst

• Context
• Kernel
• Community
• Loadable Modules
• Boot Process
• Key Concepts
• Linux Security Frameworks

Outline

08.10.2020 22

• kernel: core kernel code
• arch: architecture specific
• mm: Memory Management
• net: Network stacks
• fs: File Systems
• block: Block Layer
• drivers: device drivers and loadable modules
• documentation
• scripts: utilities

Kernel Source Code

08.10.2020 · 23

https://elixir.bootlin.com/linux/latest/source

Configuring: .config file or
make menuconfig

• Configuration options
(about HW, features)

• Which drivers to build
(about peripherals)

• Debug options

Building the kernel

08.10.2020 · 24

Kernel files generated by the build process, placed under /boot:
• Linux kernel executable:

• vmlinux, vmlinuz: vm for virtual memory, z for compressed
• Linux kernel image (that can be loaded as is in RAM so that it can be executed):

• zImage, bzImage, uImage
• Initial RAMDisk

• Initial root file system
• Enough drivers so that the kernel can mount/start initializing

• Device Tree Structure (.dtbs)
• Depending on Processor/System devices

• Loadable Kernel Modules (.ko)
• Built at compile time; enabled at boot time; loaded at run-time

• System Map
• Map (Symbol table, Address in memory)

Building the kernel

08.10.2020 · 25

A device driver:
• enables the operating system to interact with a

piece of hardware.
• aims to abstract the hardware specific properties

away
• provides access to it via an interface shared with

other devices to a common kernel framework(i.e.
input, iio, ..)

Devices Drivers

08.10.2020 · 26

3 classes of devices:
1. Block Devices

• Block I/O and Virtual File System (upcoming lecture)
2. Character Devices
3. Network Devices

• Accessed via socket API (breaks everything is a file)

Drivers provide code handling
a class of hardware, device objects
contain the specific state for a
single piece of hardware.

Devices and Drivers

08.10.2020 · 27

• Init - global initialization
• Probe - create device
• Open/Close
• Power management
• Remove - global deinitialization

Driver Lifecycle

08.10.2020 · 28

• Code that does not need to be executed before a
filesystem is available to the kernel can be compiled
as a kernel module.

• Kernel modules saves a lot of memory!
• Modules can be loaded automatically, if the module

provides a device table that can be matched with
well-known device ids, e.g., usb device ids.

Builtin Drivers vs. Loadable Modules

08.10.2020 · 29

http://www.tldp.org/HOWTO/html_single/Module-HOWTO

http://www.tldp.org/HOWTO/html_single/Module-HOWTO

• Context
• Kernel
• Community
• Loadable Modules
• Boot Process
• Key Concepts
• Linux Security Frameworks

Outline

08.10.2020 30

Linux Boot Process

08.10.2020 · 31

Hardware and firmware vulnerabilities

https://resources.infosecinstitute.com/32-hardware-and-firmware-vulnerabilities/

LinuxBoot

08.10.2020 · 32
https://www.opencompute.org/projects/open-system-firmware

Linux as firmware: LinuxBoot

https://www.opencompute.org/projects/open-system-firmware
https://www.linuxboot.org/

Linux Boot Process

08.10.2020 · 33

Linux Kernel Teaching, H.Homberg

Kernel initialization

1. Early init - handle parameters passed on from the bootloader
2. Transition to protected mode (if x86)
3. Decompression of kernel
4. Page table and early interrupt and exception handling setup
5. start kernel() 2

5.1 Perform archspecific setup (memory layout analysis, copying
boot command line again, etc.).

5.2 Print Linux kernel ”banner” containing the version (early prints
available now)

5.3 Initialise traps, irqs, data required for scheduler.
5.4 Parse boot command line options and initialise console. -

(normal console prints available)
5.5 Enable interrupts.
5.6 Initialize memory allocation and print out the ”Memory: ...”

line.
5.7 Perform archspecific ”check for bugs” and, whenever possible,

activate workaround for processor/bus/etc bugs.
5.8 Initialize scheduler, trigger start of init process
5.9 Go to idle loop

2main.c http://lxr.free-electrons.com/source/init/main.c 7 / 27

• Context
• Kernel
• Community
• Loadable Modules
• Boot Process
• Key Concepts
• Linux Security Frameworks

Outline

08.10.2020 34

• Monolithic Kernel
• Stable ABI
• Dynamic loading of kernel modules
• Threads are processes that share resources with

other processes
• Everything is a file descriptor
• In-kernel Virtualization (BPF)

Kernel Key Concepts

08.10.2020 · 35

Monolithic Kernel vs. Microkernel

08.10.2020 · 36

“The real issue, and it's really fundamental, is the issue of sharing address spaces.
Nothing else really matters. Everything else ends up flowing from that fundamental
question: do you share the address space with the caller or put in slightly different terms:
can the callee look at and change the callers state as if it were its own (and the other way
around)?”

Linus Torvald, 2006 (in response to A.Tanenbaum article in IEEE Computer, May 2006)

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate

• ABI: Application Binary Interface
• API: source code is portable
• ABI: machine code is portable

• The Linux ABI must be backward compatible and
must not break
• System Call Interface of the Linux kernel
• Subroutines in the GNU C Library (glibc)

Stable ABI

08.10.2020 · 37

https://github.com/torvalds/linux/tree/master/Documentation/ABI

https://github.com/torvalds/linux/tree/master/Documentation/ABI

Trap Example: System call
• User calls: open(filename, options)
• Function open executes system call instruction int

• OS must find or create file, get it ready for reading or writing
• Returns integer file descriptor

0804d070 <__libc_open>:
. . .
804d082: cd 80 int $0x80
804d084: 5b pop %ebx
. . .

User Process OS

exception

open file
returns

int
pop

arch/x86/entry/syscalls/syscall_64.tbl

System Call

08.10.2020 · 39

https://code.woboq.org/userspace/glibc/sysdeps/unix/sysv/linux/

arch/x86/kernel/entry/entry_32.S

https://code.woboq.org/userspace/glibc/sysdeps/unix/sysv/linux/

• Kernel modules are .ko files
located in /lib/modules

• Commands:
• lsmod: lists installed modules
• Modprobe: installs module

Loading Kernel Object

08.10.2020 · 40

Process context:
• 8KB / process in kernel space to store

process descriptor task_struct
(/include/linux/sched.h).
State:

#define TASK_RUNNING 0
#define TASK_INTERRUPTIBLE 1
#define TASK_UNINTERRUPTIBLE 2
#define TASK_ZOMBIE 4
#define TASK_STOPPED 8

Process ID
+ virtual memory info, file system info,
open files, signal handlers, …

• The thread of execution thread_struct
(linux/arch/x86/include/asm/processor.h)
PC, registers, Fault info,

Processes and Threads

08.10.2020 · 41

Task’s kernel-stack
Task’s thread_struct

page-frame aligned

Task’s
process-descriptor

struct task_struct
8-KB

• Defining features of Unix, and its derivatives
• File descriptor is a handle on a stream of bytes
• Create/Delete, Open/close, Read/Write (seq/random)

• Linux uses the file system abstraction to provide
access to hardware, configuration and debug
information by exposing files that can be read and
written.
• Note that these special files are only exposed in file

system name space - the files can be accessed like
normal files but are not actually stored on any media.

Everything is a File Descriptor

08.10.2020 · 42

sys : a means to export kernel data structures, their
attributes, and the linkages between them to
userspace
dev : contains the special device files for all the devices
proc : more information to userspace (cmdline,
version, devicetree)
debugfs : kernel to userspace debug information

e.g., /proc/version, /proc/info

Built-in file systems

08.10.2020 · 43

EVERYTHING IS A FILE DESCRIPTOR

Linux has learnt from research on Data plane OS!
OUT: POSIX. IN: zero copy and minimized synchronization overhead.

Source: Jens Axboe

user-space

kernel

hardware

SPDK

Application

Application Application

aio

driver

Io_uring

driver

Source: Faster IO through io_uring & Efficient I/O with io_uring, J.Axboe

Memory copy
Shared rings
for submissions
and completions

IRQ-based Polling or IRQ-based

SSD SSD SSD

polling+driver

https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/
https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf

In-Kernel Virtualization

08.10.2020 · 45

https://www.iovisor.org/technology/ebpf
http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html

https://www.iovisor.org/technology/ebpf
http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html

• Context
• Kernel
• Community
• Loadable Modules
• Boot Process
• Key Concepts
• Linux Security Frameworks

Outline

08.10.2020 46

Linux Security Modules

08.10.2020 · 47

LSM Hooks

• Each LSM hook is a function pointer
in a global table, security_ops.
• Discretionary Access Control:

restricts access to resources based
on users and/or groups they belong
• Mandatory Access Control:

programs can only do what they
need to perform their tasks

=> Checks based on context

08.10.2020 · 48

LSM Frameworks

• AppArmor
• SELinux
• Smack

Differences:
- Naming of kernel objects
- Definition of security fields
- Definition of security policies

General framework to control
operations on kernel objects
and a set of opaque security
fields in kernel data structures
for maintaining security
attributes.
Used by loadable kernel
modules to implement a given
model of security.

08.10.2020 · 49

https://ubuntu.com/tutorials/beginning-apparmor-profile-development#1-overview

Seccomp

Seccomp filter cannot prevent a user
process from opening files in only
certain locations in the filesystem,
like /etc/password.
Since seccomp filters cannot
dereference pointers, they cannot
compare the paths users pass as
arguments to the open system call
(like AppArmor) nor are they able to
examine inodes to read security
attributes attached to files (like
SELinux).

• Leverages BPF
• MAC is a filter to prevent the

calling process, or any
descendants, to make a
system call.

• Security policy defined in
user space

08.10.2020 · 50

Follow Evolution on-line:
• https://www.kernel.org/
• https://github.com/torvalds/linux/
• https://elixir.bootlin.com/linux/latest/source
• https://lwn.net/
• https://lkml.org/

Useful Resources

08.10.2020 · 51

https://www.kernel.org/
https://github.com/torvalds/linux/
https://elixir.bootlin.com/linux/latest/source
https://lwn.net/
https://lkml.org/

