VO ¢ ;
L_]{ L CH LIMAt tv-__ll.l_l’v-'ﬂ-(.--l

2 TE.

ballc O . ttr:(:n_j -
23iicize) Operating Systems and C

gigg;;;:_;’,;il 7a. Llnux Kernel Security

- L,
l‘ . - » 11[‘]
for (oONn =1 g g
l \’\ 1 /\j A3 =k |_l" : ; l I aRA
- 1 \‘).. apu |

With slides from Hans Holmberg10.2020 -1

* Context

e Kernel

* Community

 Loadable Modules

* Boot Process

* Key Concepts

* Linux Security Frameworks

IT UNIVERSITY OF COPENHAGEN

Linux First Announcement

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system
Message-ID: <1991Aug25.205708.9541@klaava.Helsinki. FI>
Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Hello everybody out there using minix —

I'm doing a (free) operating system (just a hobby, won't be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I'd like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

T've currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I'll get something practical within a few months, and
I'd like to know what features most people would want. Any suggestions
are welcome, but I won’t promise I'll implement them &

Linus (torvalds @kruuna.helsinki.fi)

PS. Yes — it’s free of any minix code, and it has a multi-threaded fs.
It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that’s all I have :-(.

IT UNIVERSITY OF COPENHAGEN 08.10.2020 3

https://gcc.gnu.org/

https://github.com/torvalds/linux

IT UNIVERSITY OF COPENHAGEN

Portable Operating System Interface
Goal: Common denominator for Unix systems
Collection of Specifications: Core services (processes,

signals, File system, Pipes, 1/0, C Library), Real-time
extensions, Threads.

IT UNIVERSITY OF COPENHAGEN

GNU

“GNU, which stands for Gnu's Not Unix, is the name
for the complete Unix-compatible software system
which | am writing so that | can give it away free to
everyone who can use it. Several other volunteers are
helping me. Contributions of time, money, programs
and equipment are greatly needed.”

GNU Manifesto

Richard Stallman, 1985

IT UNIVERSITY OF COPENHAGEN

https://www.gnu.org/gnu/manifesto.en.html

GNU/Linux

By 1991, the GNU ecosystem contained:
A Ccompiler: gcc (1% version in 1987)
 Astandard Clibrary: glibc

* Atext editor: Emacs

No full kernel implementation => Linux fixed that.

IT UNIVERSITY OF COPENHAGEN

Linux

* Linuxis a Registered Trademark of Linus Torvalds.
 Mostly POSIX-compliant OS:

. Kernel: Monolithic OS kernel

 Linux Distribution: Kernel, GNU tools and libraries, package
management system, documentation, window system, window

manager, desktop environment
 E.g., Ubuntu, Red Hat, Gentoo, Arch Linux, Mint, ...
e Android : Mobile OS

 Yocto: Templates, tools and methods to help you create custom
Linux-based systems for embedded and 10T products

IT UNIVERSITY OF COPENHAGEN

https://source.android.com/devices/architecture/kernel
https://www.yoctoproject.org/about/

[]
I_I n u X TO d a https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
y https://www.linuxcounter.net/

As of 2017, the Linux operating system runs 20 percent of the public
cloud workload, has 62 percent of the embedded market share, and 99
percent of the supercomputer market share. It runs 82 percent of the
world's smartphones and nine of the top ten public clouds. However, the
sustained growth of this open source ecosystem and the amazing
success of Linux in general would not be possible without the steady
development of the Linux kernel.

The Linux kernel, which forms the core of the Linux system, is the result
of one of the largest cooperative software projects ever attempted. Regular
releases every nine to ten weeks deliver stable updates to Linux users, each
with significant new features, added device support, and improved performance.
The rate of change in the kernel is high and increasing, with over 12,000
patches going into each recent kernel release. Each of these releases contains
the work of over 1,600 developers representing over 200 corporations.

IT UNIVERSITY OF COPENHAGEN 08.10.2020 -

https://www.linuxfoundation.org/2017-linux-kernel-report-landing-page/
https://www.linuxcounter.net/

* Context

e Kernel

* Community

 Loadable Modules

* Boot Process

* Key Concepts

* Linux Security Frameworks

IT UNIVERSITY OF COPENHAGEN

Architecture

Open

Window

User-space Applications manager Libraries

Kernel interface (system call interface)

Process Virtual file '
é management IPC system Flexible Real-time
=
; M Network SELI /
emory etwo inux

= Linux kemel management subsystem AppArmor Secure

Drivers and dynamic modules Modular Dynamic

Arch-dependent code Portable
Hardware Processor architecture

IT UNIVERSITY OF COPENHAGEN 08.10.2020 -

CPU Modes

* 4 protection rings in X86_64

* Instructions at Ring X, not
available from Ring X+1

e Ring 0is most privileged
 Accessible from Linux kernel
* Ring 3 is least priviledged

. Accessible from Linux user
space

IT UNIVERSITY OF COPENHAGEN

Example privileged instructions:

HLT: Halt CPU till next interrupt.

INVLPG: Invalidate a page entry in the
translation look-aside buffer (TLB).

LIDT: Load Interrupt Descriptor Table.

MOV CR registers: load or store control
registers. In this case the MOV instruction (a
non-privileged instruction on its own) is
accessing a privileged register.

Modify 10 privilege level

e The OS kernel is started when the computer boots

e The OS kernel then manages all the computer’s
resources (processor, memory, 1/0 devices)

 The OS kernel partitions the memory into kernel
space (reserved to the kernel) and user space (all
applications)

 The OS kernel exposes an interface to user space
applications, the system calls.

IT UNIVERSITY OF COPENHAGEN

Kernel

Debugging is hard

 Bugs bring the system down!
. No standard library (no libc, no headers)

. No libc support for threads, 1/Os, data structures.

. Kernel-specific services

. No memory protection mechanism

. No high-level abstraction for floating points

. Small per-process fixed stack

. Preemptive tasks, asynchronous interrupts, supports for multi-processing (SMP)
. Synchronization and concurrency are hard to manage!

. Portability is of the essence
. Avoid undefined behavior!

. Endian-neutral, no assumptions about page/word size, ...

IT UNIVERSITY OF COPENHAGEN

Kerne | SO urce CO d e mainline: 5.9-rc8 2020-10-04
stable: 5.8.13 2020-10-01

longterm: 5.4.69 2020-10-01

* Available from kernel.org longterm: 4.19.149 2020-10-01

« Several versions of the tongzerm: 2'194'223%0 ;g;g'lg‘gl
_ ongterm: 4.9. -10-

kernel: longterm: 4.4.238 2020-10-01

° Mainline (e_g.’ 5'9_rcg) linux-next: next-20201002 2020-10-02

 Maintained by Linus Torvald, benevolent dictator
 Master tree, all new code is merged here
 Stable and longterm
* Maintained by Greg Kroah-Hartman and others
 Bugfixes and trivial support for new devices
* Next
 Maintained by Stephen Rothwell

e Staging ground for new code from the maintainers

IT UNIVERSITY OF COPENHAGEN

http://kroah.com/log/blog/2018/08/24/what-stable-kernel-should-i-use

* Context

e Kernel

* Community

 Loadable Modules

* Boot Process

* Key Concepts

* Linux Security Frameworks

IT UNIVERSITY OF COPENHAGEN

Linux Kernel Community

https://qithub.com/netoptimizer

Jesper Dangaard Brouer

Julia Lawall (INRIA, ex DIKU) - Jens Axboe (FB)
Coccinelle Block Layer (fio)

IT UNIVERSITY OF COPENHAGEN 08.10.2020 - 17

https://github.com/netoptimizer

Linux Kernel Community

Matias Bjerling (WD)
LightNVM

Hans Holmberg (WD)
Kernelteaching
https://lundlinuxcon.org/

IT UNIVERSITY OF COPENHAGEN

! :_ (Samsung)
. pblk

[]
Pa tC h - B a S e d EVO | u t I O n https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://www.kernel.org/doc/html/v4.17/process/2.Process.html#the-big-picture

Linux is under the responsibility of Linus Thorvald.

Linux is decomposed into subsystems, under the
responsibility of a maintainer (e.g., Jens Axboe for the
block layer)

Each maintainer is a gatekeeper for her subsystem

They manage their version of the source tree

Review/accept patches from developers

Send pull requests to Linus for patches that they think
should be merged into the mainline

IT UNIVERSITY OF COPENHAGEN

https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://www.kernel.org/doc/html/v4.17/process/2.Process.html

Submitting a Patch

1. Git as atool to represent diff

2. Describe changes

3. Make sure your code conforms to Linux coding style
4. Send patch to relevant reviewer (plain text)
5. Respond to comment from reviewer

6. Reviewer signs off your patch and forwards to maintainer

IT UNIVERSITY OF COPENHAGEN

[]
Code of Conflict R
Date Sun, 23 Dec 2012 09:36:15 -0800

Subject Re: [Regression w/ patch] Media commit causes user ¢

On Sun, Dec 23, 2012 at 6:08 AM, Mauro Carvalho Chehab
<mchehab@redhat.com> wrote:
>

> Are you saying that pulseaudio is entering on some weird loop if the
> returned value is not -EINVAL? That seems a bug at pulseaudio.

Mauro, SHUT THE FUCK UP!
It's a bug alright - in the kernel. How long have you been a

L]
maintainer? And you *still* haven't learnt the first rule of kernel
maintenance?

If a change results in user programs breaking, it's a bug in the
kernel. We never EVER blame the user programs. How hard can this be to
understand?

To make matters worse, commit fOed2ce840b3 is clearly total and utter
CRAP even if it didn't break applications. ENOENT is not a valid error
return from an ioctl. Never has been, never will be. ENOENT means "No
such file and directorv". and is for vpath operations. ioctl's are done
way in hell that

This week people in our community confronted me about my lifetime of

not understanding emotions. My flippant attacks in emails have been P S
both unprofessional and uncalled for. Especially at times when I made
it personal. In my quest for a better patch, this made sense to me. Eoxind of obvious

I know now this was not OK and I am truly sorry.

I have another
tions being broken
d you've shown

The above is basically a long-winded way to get to the somewhat apply it directly
painful personal admission that hey, I need to change some of my
behavior, and I want to apologize to the people that my personal
behavior hurt and possibly drove away from kernel development particularly don 't

e your whole email

entirely. hings was so

n shit. It adds an
o insane, it adds a
: ret").

I am going to take time off and get some assistance on how to '
understand people’s emotions and respond appropriately. o T

Fix your f*cking "compliance tool", because it is obviously broken.

|_|_ UNlVERSlTY OF COPENHAGEN And fix your apzri::i:h to kernel programming.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/CodeOfConflict?id=ddbd2b7ad99a418c60397901a0f3c997d030c65e
https://github.com/torvalds/linux/blob/master/Documentation/process/code-of-conduct.rst

* Context

e Kernel

* Community

 Loadable Modules

* Boot Process

* Key Concepts

* Linux Security Frameworks

IT UNIVERSITY OF COPENHAGEN

Ke r n e | S O u rce CO d e https://elixir.bootlin.com/linux/latest/source

Documentation
LICENSES

. kernel: core kernel code arch

block

* arch: architecture specific certs

crypto

* mm: Memory Management drivers

firmware

. net: Network stacks fs

include

 fs: File Systems o
* block: Block Layer el
e drivers: device drivers and loadable modules mm

net

. documentation samples

scripts

i SCfiptS: Utl|ltles Open security

,,,,,,,,,,,,,,,,,, sound
Window
manager

“““““““““ usr
I Kernel interface (system call interface) l

User-space | Applications Libraries tools

virt

Flexible Real-time| COPYING 423 bytes
CREDITS 98741 bytes
Secie Kbuild 2245 bytes
Kconfig 563 bytes
MAINTAINERS 481953 bytes
I Arch-dependent code | Portable Makefile 61129 bytes

IT UNIVERSITY OF COPENHAGEN i

Process
management

Virtual file
system

=]

GNU/Linux

Network
subsystem

SELinux /
AppArmor

Memory

i mel
Ui Emre management

I Drivers and dynamic modules l Modular Dynamic

Building the kernel

Configuring: .config file or S

File Edit View Search Terminal Help
.config - Linux/x86 4.9.0-rc5 Kernel Configuration

l I Ia ke I I len u CO nfig - Device Drivers - Open-Channel SSD target support
pen-Channel D target uDni

I pport

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to

° Conﬁgu ration Options exit, <?> for Help, </ for Search. Legend: [*] built-in []
--- Open-Channel SSD target support
[*] -Ch 1 SSD deb i
(a bo ut HW’ featu reS) <*> ‘Zrewgralaagrew—Volati?euggﬁlzgysr’lzggg;r for Open-Channel SSDs
<*> Hound-robin Hybrid Open-Channel SSD target
Which drivers to build

(about peripherals)

E‘ Physical Block Device Open-Channel SSD target
[*

] PBLK without L2P scan recovery

< Exit > < Help > < Save > < Load >

 Debug options

IT UNIVERSITY OF COPENHAGEN 08.10.2020 - 24

Building the kernel

Kernel files generated by the build process, placed under /boot:
* Linux kernel executable:
 vmlinux, vmlinuz: vm for virtual memory, z for compressed
Linux kernel image (that can be loaded as is in RAM so that it can be executed):

* zlmage, bzlmage, ulmage
* Initial RAMDisk
* Initial root file system
* Enough drivers so that the kernel can mount/start initializing
e Device Tree Structure (.dtbs)
« Depending on Processor/System devices
* Loadable Kernel Modules (.ko)
. Built at compile time; enabled at boot time; loaded at run-time
* System Map
* Map (Symbol table, Address in memory)

IT UNIVERSITY OF COPENHAGEN

Devices Drivers

A device driver:

 enables the operating system to interact with a
piece of hardware.

* aims to abstract the hardware specific properties
away

 provides access to it via an interface shared with
other devices to a common kernel framework(i.e.
input, iio, ..)

IT UNIVERSITY OF COPENHAGEN

Devices and Drivers

3 classes of devices:
1. Block Devices

 Block I/O and Virtual File System (upcoming lecture)

2. Character Devices
3. Network Devices

e Accessed via socket APl (breaks everything is a file)

Drivers provide code handling

a class of hardware, device objects
contain the specific state for a
single piece of hardware.

IT UNIVERSITY OF COPENHAGEN

Kernel
framework

A

Driver

Y

Hardware

Device

Driver Lifecycle

* Init - global initialization

* Probe - create device
 Open/Close

* Power management

* Remove - global deinitialization

IT UNIVERSITY OF COPENHAGEN

Builtin Drivers vs. Loadable Modules

http://www.tldp.org/HOWTO/html_single/Module-HOWTO

 Code that does not need to be executed before a
filesystem is available to the kernel can be compiled
as a kernel module.

 Kernel modules saves a lot of memory!

 Modules can be loaded automatically, if the module
provides a device table that can be matched with
well-known device ids, e.g., usb device ids.

IT UNIVERSITY OF COPENHAGEN

http://www.tldp.org/HOWTO/html_single/Module-HOWTO

* Context

e Kernel

* Community

 Loadable Modules

* Boot Process

* Key Concepts

* Linux Security Frameworks

IT UNIVERSITY OF COPENHAGEN

Linux Boot Process

Kernel boot process overview

HW INIT & BOOTSTRAP

v

BOOTLOADER
(UEFI firmware / grub / fastboot / uboot)

* parameters: initrd, commandline, machine descriptions

KERNEL —»> INIT PROCESS > User space

(zlmage, vmlinux, ..) (systemd, android init, ..) processes

v v vVYYy

Hardware and firmware vulnerabilities

IT UNIVERSITY OF COPENHAGEN 08.10.2020 - 31

https://resources.infosecinstitute.com/32-hardware-and-firmware-vulnerabilities/

Linux as firmware: LinuxBoot

Security Pre-EF Drivers Bogt El)e\;ice Transiigtagystem Run Time Security | | Pre-EFlI Drivers Boot Device s Trta"Sii”t § Run Time
(SEC) (PEN) elec (SEC) (PEI) (DXE) Select (BDS) ystem Loa (RT)
22A5) (BDS) (TSL) RT) (TSL)

https://www.opencompute.org/projects/open-system-firmware
IT UNIVERSITY OF COPENHAGEN 08.10.2020 - 32

https://www.opencompute.org/projects/open-system-firmware
https://www.linuxboot.org/

I_l n UX BOOt P rOcess Linux Kernel Teaching, H.Homberg

Kernel initialization

1. Early init - handle parameters passed on from the bootloader
Transition to protected mode (if x86)
Decompression of kernel

Page table and early interrupt and exception handling setup

start_kernel() 2

5.1 Perform archspecific setup (memory layout analysis, copying
boot command line again, etc.).

5.2 Print Linux kernel "banner” containing the version (early prints
available now)

5.3 Initialise traps, irgs, data required for scheduler.

5.4 Parse boot command line options and initialise console. -
(normal console prints available)

5.5 Enable interrupts.

5.6 Initialize memory allocation and print out the "Memory: ..."
line.

5.7 Perform archspecific " check for bugs” and, whenever possible,
activate workaround for processor/bus/etc bugs.

5.8 Initialize scheduler, trigger start of init process

5.9 Go to idle loop

2main.c http://1xr.free-electrons.com/source/init/main.c r/2r

IT UNIVERSITY OF COPENHAGEN

oW

* Context

e Kernel

* Community

 Loadable Modules

* Boot Process

* Key Concepts

* Linux Security Frameworks

IT UNIVERSITY OF COPENHAGEN

Kernel Key Concepts

 Monolithic Kernel

e Stable ABI

 Dynamic loading of kernel modules

 Threads are processes that share resources with
other processes

* Everything is a file descriptor

* In-kernel Virtualization (BPF)

IT UNIVERSITY OF COPENHAGEN

Monolithic Kernel vs. Microkernel

Application

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds debate

Application
T
VFS, System calls

IPC, File System

Scheduler virtual Memory

Kernel

Basic IPC, Virtual Memory,
Scheduling

Space
Device Driver, Dispatcher

Hardware

Hardware

Microkernel

Monolithic Kernel

“The real issue, and it's really fundamental, is the issue of sharing address spaces.
Nothing else really matters. Everything else ends up flowing from that fundamental
question: do you share the address space with the caller or put in slightly different terms:
can the callee look at and change the callers state as if it were its own (and the other way

around)?”

Linus Torvald, 2006 (in response to A. Tanenbaum article in IEEE Computer, May 2006)

IT UNIVERSITY OF COPENHAGEN

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate

Sta b l € AB' https://github.com/torvalds/linux/tree/master/Documentation/ABI

* ABI: Application Binary Interface
 API: source code is portable
 ABI: machine code is portable
 The Linux ABI must be backward compatible and
must not break
e System Call Interface of the Linux kernel
e Subroutines in the GNU C Library (glibc)

IT UNIVERSITY OF COPENHAGEN

https://github.com/torvalds/linux/tree/master/Documentation/ABI

Trap Example: System call

* Usercalls: open (filename, options)
* Function open executes system call instruction int

0804d070 < 1libc open>:

804d082: cd 80 int $0x80
804d084: 5b pop sebx

User Process OS

b exception

pop

returns

v

* OS must find or create file, get it ready for reading or writing

* Returns integer file descriptor

IT UNIVERSITY OF COPENHAGEN

open file

syscall 64.tbl

common read

common write

common open

common close

common stat

common fstat

common lstat

common poll

common lseek

common mmap

common mprotect
common munmap
common brk

64 rt sigaction
common rt sigprocmask
64 rt_sigreturn
64 ioctl

CoOoONOUAEAWNEO

execve
ptrace
rt_sigpending

rt sigtimedwait
rt_sigqueueinfo
sigaltstack

timer create
mqg_notify
kexec_load

waitid

set robust list
get robust list
vmsplice

move pages

preadv

pwritev

rt tgsigqueueinfo
recvmmsg

sendmmsg
process_vm_readv
process_vm_writev
setsockopt
getsockopt
io_setup

io submit
execveat

preadv2

pwritev2

sys read

sys write

sys_open

sys _close
sys_newstat

sys newfstat

sys newlstat

sys _poll

sys lseek

sys_mmap
sys_mprotect
Sys_munmap

sys brk

sys rt _sigaction
sys rt_sigprocmask
sys rt_sigreturn/ptregs
sys ioctl

compat_sys execve/ptregs
compat_sys ptrace
compat_sys rt sigpending
compat sys rt sigtimedwait
compat_sys rt sigqueueinfo
compat_sys sigaltstack
compat sys timer create
compat_sys mq_notify

compat sys kexec load
compat sys waitid
compat_sys set robust list
compat_sys get robust list
compat_sys_vmsplice
compat_sys move pages
compat_sys preadv64
compat_sys pwritev64

compat sys rt tgsigqueueinfo
compat_sys_recvmmsg
compat_sys_sendmmsg
compat_sys_process_vm_readv
compat_sys process_vm writev
compat sys setsockopt
compat_sys_getsockopt
compat_sys io setup

compat sys io submit
compat_sys_execveat/ptregs
compat_sys preadv64v2
compat_sys pwritev64v2

arch/x86/entry/syscalls/syscall_64.tbl

Syste m Ca I I https://code.wobog.org/userspace/glibc/sysdeps/unix/sysv/linux/

————————————— UserMode -~ - --=-=-=-======~,

: Application glibc wrapper function :
I program (sysdeps/unix/ "
: sysv/linux/execve.c) I
I
: execve(path, argv, envp))
| / { :
I dié
I
: e ” / int 0x80 > t
I execve(path, (arguments: __NR_execve, '
| argv, envp); [
: path, argu, envp) I
S ivs @ 1
l -~
I 1 return; :]
! } v S| e
[| g ‘ s
D e e e e e e 4 = S
S| 13
re e —-—- Kernel Mode - - - === ccce-- | § §
: System call Trap handler X 3
I service routine Lo aca o) : 3 IS
l \ﬂl\.lll AU NTANITAr CllLL’_J‘ IJ’ ' % g.
I (arch/x86/kernel/ |
: process_32.c) system call: - '
| 0 :
I | sys_execve
- I
L B
| call sys_call_table .
: [__NR_execve] I
I
: return error; +—1 I
I } - : J
| |
o -

arch/x86/kernel/entry/entry_32.S

IT UNIVERSITY OF COPENHAGEN 08.10.2020 - 39

https://code.woboq.org/userspace/glibc/sysdeps/unix/sysv/linux/

Loading Kernel Object

 Kernel modules are .ko files
located in /lib/modules

e Commands:
* [smod: lists installed modules
* Modprobe: installs module

IT UNIVERSITY OF COPENHAGEN

msdos
jfs
xfs
binfmt misc

ipmi ssif

intel rapl

skx_edac

x86 pkg temp thermal
intel powerclamp
coretemp

kvm_intel

kvm

dcdbas

irgbypass

intel cstate

intel rapl perf

mei me

ioatdma

ipmi si

1pc ich

mei

ipmi devintf
ipmi msghandler
acpi_power meter
mac_hid

ib iser

rdma_cm

iw_cm

ib_cm

ib_core

iscsi tep
libiscsi tcp
libiscsi

scsi transport iscsi
autofsd

btrfs
zstd_compress
raidlo

raid456
async_raidé recov
async_memcpy
async_pq
async_xor
async_t

-
raidé pq
libcre32c

raidl

raido

multipath
linear
crctledif pclmul
mgag200

cre32 pclmul

i2c algo bit
ghash _clmulni_intel
ttm

pcbe
drm_kms_helper
syscopyarea
sysfillrect
aesni_intel
i4ee

aes_x86_64

tg3

sysimgblt

crypto simd

fb sys fops
glue_helper
bnxt_en

ptp

pps_core
libahci

1

1

106496
57344
32768

102400
20480

188416

200128
20480
32768
20480
16384

16384
16384
16384

204800

593920
16384
16384
20480
16384
40960
57344
61440
24576
90112
36864
16384
20480
53248
20480
16384
49152
61440
45056
53248

5280
20480
20480
53248

98304
40960
22304

163840
53248

143360
20480
16384
16384
16384
16384
24576

114688
16384
40960
20480
16384
16384
16384
45056
16384
16384
16384

102400
16384

167936
16384
16384

188416

335872
20480

163840
16384
16384
16384
16384

159744
20480

397312

143360

24

20480
32768

U
0

sed by

kvm_intel

kvm

mei me

ioatdma

3 ipmi ssif,ipmi devintf,ipmi si

ib iser
rdma_cm
a_cm

4 ib iser,ib cm,rdma cm,iw cm

iscsi tep

3 ib iser,libiscsi tcp,iscsi tcp

4 ib_iser,libiscsi,iscsi tcp

btrfs

raid4s6

raid456,async_raidé recov

raid456,async raidé recov

async_pq, raid456,async_raidé recov
async_xor,async_pq,raid456,async _memcpy,async raid6é recov
async xor,btrfs

async_pq,btrfs,raid456,async raidé recov

xfs, raid456

mgag200
mgag200

mgag200
drm_kms_helper
drm_kms_helper

aesni_intel

drm_kms_helper
aesni_intel
drm_kms_helper
aesni_intel

i40e,tg3
mgag200, ttm,drm_kms_helper

crypto simd,ghash clmulni intel,aesni intel
bnxt_en

ptp
ahci

Processes and Threads

\4

Task’s thread_struct
Task’s kernel-stack

struct task_struct ¢ VVVVVVVY
, 8-KB
Process context: VS
. process-descriptor
. 8KB / process in kernel space to store page-frame aligned

process descriptor task_struct
(/include/linux/sched.h).

State:
> struct task_struct
T struct task_struct
struct task_struct
struct task_struct
ProceSS ID unsigned long state;
+ virtual memory info, file system info, it prio .)
. . unsigned long policy; ‘
open files, signal handlers, ... struct task_struot "parent; | | ~~
) oaasasaiRlar s?ruct Ii‘st_head tasks;
* The thread of execution thread_struct P pid._t pic; -
(linux/arch/x86/include/asm/processor.h) il

A w
Y
the task list

PC, registers, Fault info,

IT UNIVERSITY OF COPENHAGEN

Everything is a File Descriptor

* Defining features of Unix, and its derivatives
* File descriptor is a handle on a stream of bytes
* Create/Delete, Open/close, Read/Write (seqg/random)
* Linux uses the file system abstraction to provide
access to hardware, configuration and debug
information by exposing files that can be read and
written.

 Note that these special files are only exposed in file
system name space - the files can be accessed like
normal files but are not actually stored on any media.

IT UNIVERSITY OF COPENHAGEN

Built-in file systems

sys : a means to export kernel data structures, their
attributes, and the linkages between them to
userspace

dev : contains the special device files for all the devices
proc : more information to userspace (cmdline,
version, devicetree)

debugfs : kernel to userspace debug information

e.g., /proc/version, /proc/info

IT UNIVERSITY OF COPENHAGEN

EVERYTHING IS A FILE DESCRIPTOR

Latency tests, 3d xpoint, 4k random read

Interface QD Polled Latency IOPS
User-Space io_uring 1 0 9.5usec 77K
io_uring 2 0 8.2usec 183K
io_uring 4 0 8.4usec 383K
io_uring 8 0 13.3usec 449K
libaio 1 0 9.7usec 74K
libaio 2 0 8.5usec 181K
kernel libaio 4 0 8.5usec 373K
libaio 8 0 15.4usec 402K
io_uring 1 1 6.lusec 139K
io_uring 2 1 6.lusec 272K
io_uring 4 1 6.3usec 519K
io_uring 8 1 11.5usec 592K
hardware spdk 1 1 6.lusec 151K
spdk 2 1 6.2usec 293K
spdk 4 1 6.7usec 536K
spdk 8 1 12.6usec 586K
Source: Faster 10 through io _uring & Efficient /O with io uring, J.Axboe Source: Jens Axboe

Linux has learnt from research on Data plane OS!
UT: POSIX. IN: zero copy and minimized synchronization overhead.

IT UNIVERSITY OF COPENHAGEN

https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/
https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/
http://kernel.dk/io_uring.pdf

| Virtualizati —
In-Kernel Virtualization e

BPF for Tracing, Internals

Observability Program Kernel
load : .
BPF .| BPF ___——1% verifier static tracing
program bytecode l tracepoints
attach - -
event config dynamic tracing
/ BPF i kprobes
< per-event | — uprobes
data
output async sampling, PMCs
copy
< statistics [« —» maps perf_events

Enhanced BPF is also now used for SDNs, DDOS mitigation, intrusion detection, container security, ...

IT UNIVERSITY OF COPENHAGEN

https://www.iovisor.org/technology/ebpf
http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html

* Context

e Kernel

* Community

 Loadable Modules

* Boot Process

* Key Concepts

* Linux Security Frameworks

IT UNIVERSITY OF COPENHAGEN

Linux Security Modules

§ User-space applications Policy utilities
? ! v
7
Rt GNU C library
A
Y Y :
System call interface Security
3 ¢ policy
)
3 .
o Request’
E Security
% he < | module
Response

Hardware

IT UNIVERSITY OF COPENHAGEN

08.10.2020 - 47

LSM Hooks

e Each LSM hook is a function pointer
in a global table, security_ops.

 Discretionary Access Control:
restricts access to resources based
on users and/or groups they belong

 Mandatory Access Control:
programs can only do what they
need to perform their tasks

=> Checks based on context

_/

CSystem call open

~-

inode search

~-

(Error check

~-

DAC checks

LSM hook

h 4

(Access to inode

<) U U U U

IT UNIVERSITY OF COPENHAGEN

LSM Frameworks

General framework to control * AppArmor

operations on kernel objects e SELinux

a.nd a §et of opaque security e Smack

fields in kernel data structures

for maintaining security

attributes. Differences:

Used by loadable kernel - Naming of kernel objects
modules to implement a given - Definition of security fields
model of security. - Definition of security policies

https://ubuntu.com/tutorials/beginning-apparmor-profile-development#1-overview

IT UNIVERSITY OF COPENHAGEN

* Leverages BPF

* MAC is a filter to prevent the
calling process, or any
descendants, to make a
system call.

* Security policy defined in
user space

IT UNIVERSITY OF COPENHAGEN

Seccomp filter cannot prevent a user
process from opening files in only
certain locations in the filesystem,
like /etc/password.

Since seccomp filters cannot
dereference pointers, they cannot
compare the paths users pass as
arguments to the open system call
(like AppArmor) nor are they able to
examine inodes to read security
attributes attached to files (like
SELinux).

Useful Resources

Follow Evolution on-line:

* https://www.kernel.org/

* https://github.com/torvalds/linux/

* https://elixir.bootlin.com/linux/latest/source
* https://lwn.net/

* https://lkml.org/

o O

5! = 4
16B USD 35,000 1 Million 10/10

Estimated development cost of the Technologists attend our events Open source professionals have Largest cloud service providers are
100+ world's leading projects hosted annually, from more than 11,000 enrolled in our free open source Linux Foundation project
at The Linux Foundation companies and 113 countries training courses contributors and members

IT UNIVERSITY OF COPENHAGEN 08.10.2020 - 51

https://www.kernel.org/
https://github.com/torvalds/linux/
https://elixir.bootlin.com/linux/latest/source
https://lwn.net/
https://lkml.org/

