
Operating Systems and C
Fall 2022, Performance-Track
7. Program Optimization

07.10.2020 · 1With slides from Bryant and O’Hallaron

Outline

Overview
Optimizations

Code motion/precomputation

Strength reduction

Sharing of common subexpressions

Removing unnecessary procedure calls

Optimization Blockers
Procedure calls

Memory aliasing

Exploiting Instruction-Level Parallelism
Dealing with Conditionals

● what optimizations does the
compiler do?

● how can I structure my
program to have impact on
what instructions the compiler
will generate?

perflab is all about this.
get 2 fs, naive implementation.
must improve.trial and error.
must understand architecture, and
what compiler can do.
how to program so compiler can
generate code that is more efficient
(avoids pitfalls)

issues that compiler faces.

we see that processor does actually
not do instruction at a time.
runs multiple instructions in parallel.
there are ways to leverage this.

avoid branch misprediction

Performance Realities

There’s more to performance than asymptotic complexity

▪ Constant factors matter too!
• Easily see 10:1 performance range depending on how code is written

• Must optimize at multiple levels:

– algorithm, data representations, procedures, and loops

▪ Must understand system to optimize performance
• How programs are compiled and executed

• How modern processors + memory systems operate

• How to measure program performance and identify bottlenecks

• How to improve performance without destroying
code modularity and generality

big-O, etc.

order of magnitude

Optimizing Compilers

▪ Provide efficient mapping of program to machine
• register allocation

• code selection and ordering (scheduling)

• dead code elimination

• eliminating minor inefficiencies

▪ Don’t (usually) improve asymptotic efficiency
• up to programmer to select best overall algorithm

• big-O savings are (often) more important than constant factors

but constant factors also matter

▪ Have difficulty overcoming “optimization blockers”
• potential memory aliasing

• potential procedure side-effects

your task: implement alg.
efficiently. compiler is your
friend here! (“black box” to DS
stud. SWU study them)

(also re-order instructions)

some optimizations explained
in a bit

Limitations of Optimizing Compilers

▪ Operate under fundamental constraint
• Must not cause any change in program behavior

• Except, possibly when program making use of nonstandard language features

• Often prevents it from making optimizations that would only affect behavior
under pathological conditions.

▪ Behavior that may be obvious to the programmer can be obfuscated by
languages and coding styles

• e.g., Data ranges may be more limited than variable types suggest

▪ Most analysis is performed only within procedures
• Whole-program analysis is too expensive in most cases

• Newer versions of GCC do interprocedural analysis within individual files

– But, not between code in different files

▪ Most analysis is based only on static information
• Compiler has difficulty anticipating run-time inputs

▪ When in doubt, the compiler must be conservative

compiler is conservative

despite this, compiler can help.
example:

int junk (int n) {
 int k = 0;
 for (int i = 0; i <= n; i++){
 k += i;
 }
 return 4;
}

Evolving compilers

07.10.2020 · 6Slide courtesy of James Greenhalgh,

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html https://gcc.gnu.org/onlinedocs/gccint/LTO-Overview.html#LTO-Overview

no optimization by default.
pick right optimization in make
file.
tradeoff between performance
and binary size.
O2 strongly recommended.

Outline

Overview
Optimizations

Code motion/precomputation

Strength reduction

Sharing of common subexpressions

Removing unnecessary procedure calls

Optimization Blockers
Procedure calls

Memory aliasing

Exploiting Instruction-Level Parallelism
Dealing with Conditionals

Generally Useful Optimizations

▪ Optimizations that you, or the compiler, should do
regardless of processor / compiler

▪ Code Motion
• Reduce frequency with which computation is performed

– If it will always produce same result

– Especially moving code out of loop

 long j;
 long ni = n*i;
 for (j = 0; j < n; j++)

a[ni+j] = b[j];

void set_row(double *a, double
*b,
 long i, long n)
{
 long j;
 for (j = 0; j < n; j++)

a[n*i+j] = b[j];
}

i : row index n : row length

Q: spot another
(code motion)
optimization?

Compiler-Generated Code Motion (-O1)

set_row:
testq %rcx, %rcx # Test n
jle .L1 # If 0, goto done
imulq %rcx, %rdx # ni = n*i
leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8
movl $0, %eax # j = 0

.L3: # loop:
movsd (%rsi,%rax,8), %xmm0 # t = b[j]
movsd %xmm0, (%rdx,%rax,8) # M[A+ni*8 +

j*8] = t
addq $1, %rax # j++
cmpq %rcx, %rax # j:n
jne .L3 # if !=, goto loop

.L1: # done:
rep ; ret

 long j;
 long ni = n*i;
 double *rowp = a+ni;
 for (j = 0; j < n; j++)

*rowp++ = b[j];

void set_row(double *a, double
*b,
 long i, long n)
{
 long j;
 for (j = 0; j < n; j++)

a[n*i+j] = b[j];
}

compiler
added another
optimization!

Reduction in Strength

▪ Replace costly operation with simpler one
▪ Shift, add instead of multiply or divide

 16*x-->x << 4
• Utility machine dependent

• Depends on cost of multiply or divide instruction

- On Intel Nehalem, integer multiply requires 3 CPU cycles

▪ Recognize sequence of products

for (i = 0; i < n; i++)
{
 int ni = n*i;
 for (j = 0; j < n;
j++)
 a[ni + j] = b[j];
}

int ni = 0;
for (i = 0; i < n; i++)
{
 for (j = 0; j < n;
j++)
 a[ni + j] = b[j];
 ni += n;
}

shift (1 cycle)
is way more
efficient than
multiplication
(3 cycles)

(think of
multiplication
as a
sequence of
additions)

Share Common Subexpressions

▪ Reuse portions of expressions

▪ GCC will do this with –O1
/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left +
right;

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left +
right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax #
(i+1)*n+j
addq %rdx, %r8 #
(i-1)*n+j

imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n

Outline

Overview
Optimizations

Code motion/precomputation

Strength reduction

Sharing of common subexpressions

Removing unnecessary procedure calls

Optimization Blockers
Procedure calls

Memory aliasing

Exploiting Instruction-Level Parallelism
Dealing with Conditionals

Optimization Blocker #1: Procedure Calls

Procedure to Convert String to Lower Case

void lower(char *s)
{
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

void lower(char *s)
{
 size_t i;
 size_t len = strlen(s);
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Lower Case Conversion Performance

▪ Time quadruples when double string length

▪ Quadratic performance

lower1

10s

Calling Strlen

▪ strlen performance
Only way to determine length of string is to scan its entire length, looking for null character.

▪ Overall performance, string of length N
N calls to strlen
Require times N, N-1, N-2, …, 1
Overall O(N2) performance

/* My version of strlen */
size_t strlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {

s++;
length++;

 }
 return length;
}

Improving Performance

Move call to strlen outside of loop

Since result does not change from one iteration to another

Form of code motion

void lower2(char *s)
{
 size_t i;
 size_t len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Lower Case Conversion Performance

▪ Time doubles when double string length

▪ Linear performance of lower2

Optimization Blocker: Procedure Calls

▪ Compiler won’t move strlen out of inner loop.
Why won’t it?

Procedure may have side effects
– Alters global state each time called

Function may not return same value for given arguments
– Depends on other parts of global state

– Procedure lower could interact with strlen

▪ Warning:
Compiler treats procedure call as a black box

Weak optimizations near them

▪ Remedies:
Use of inline functions

– GCC does this with –O1

Within single file

Do your own code motion

size_t lencnt = 0;
size_t strlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {

s++; length++;
 }
 lencnt += length;
 return length;
}

Memory Matters

▪ Code updates b[i] on every iteration

▪ Why couldn’t compiler optimize this away?

sum_rows1 inner loop
.L4:
 movsd (%rsi,%rax,8), %xmm0 # FP
load
 addsd (%rdi), %xmm0 # FP add
 movsd %xmm0, (%rsi,%rax,8) # FP
store
 addq $8, %rdi
 cmpq %rcx, %rdi
 jne .L4

/* Sum rows of n X n matrix a
 and store in vector b */
void sum_rows1(double *a, double *b, long n)
{
 long i, j;
 for (i = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)
 b[i] += a[i*n + j];

 }
}

why doesn’t the compiler keep
the intermediate results in a
register, and write register to
mem when done?
(would be 100x faster)

Memory Aliasing

▪ Code updates b[i] on every iteration

▪ Must consider possibility that
these updates will affect program behavior

/* Sum rows of n X n matrix a
 and store in vector b */
void sum_rows1(double *a, double *b, long n)
{
 long i, j;
 for (i = 0; i < n; i++) {

b[i] = 0;
for (j = 0; j < n; j++)
 b[i] += a[i*n + j];

 }
}

double A[9] =
 { 0, 1, 2,
 4, 8, 16,
 32, 64, 128};

double *B = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

Q: first suppose we had
 double B[3] = {42,42,42};
what are final values in B?

Q: now, for B as defined on left,
what are intermediate & final B?

final: [3, 28, 224]

we just
updated
part of A

reading &
writing to
same row

Removing Aliasing

Now val cannot be an alias for cells in a. (in inner loop)
No need to store intermediate results

sum_rows2 inner loop
.L10:
 addsd (%rdi), %xmm0 # FP load + add
 addq $8, %rdi
 cmpq %rax, %rdi
 jne .L10

/* Sum rows of n X n matrix a
 and store in vector b */
void sum_rows2(double *a, double *b, long n)
{
 long i, j;
 for (i = 0; i < n; i++) {

double val = 0;
for (j = 0; j < n; j++)
 val += a[i*n + j];

 b[i] = val;
 }
}

no mov instruction;
100x faster.

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 27, 16]

i = 2: [3, 22, 224]

Value of B:

Optimization Blocker: Memory Aliasing

Aliasing
Two different memory references specify single location

Easy to have happen in C

• Since allowed to do address arithmetic

• Direct access to storage structures

Get in habit of introducing local variables

• Accumulating within loops

• Your way of telling compiler not to check for aliasing

Outline

Overview
Optimizations

Code motion/precomputation

Strength reduction

Sharing of common subexpressions

Removing unnecessary procedure calls

Optimization Blockers
Procedure calls

Memory aliasing

Exploiting Instruction-Level Parallelism
Dealing with Conditionals

Exploiting Instruction-Level Parallelism

▪ Need general understanding of
modern processor design
Hardware can execute multiple instructions in parallel

▪ Performance limited by data dependencies
▪ Simple transformations can yield dramatic performance

improvement
Compilers often cannot make these transformations

Lack of associativity and distributivity in floating-point arithmetic

CPUs are in fact not
“1 instruction at a
time” interpreters as
we introduced them

Benchmark Example: Data Type for Vectors

Data Types
Use different declarations for

data_t
int
long
float
double

/* data structure for vectors */
typedef struct{

size_t len;
data_t *data;

} vec;

/* retrieve vector element
 and store at val */
int get_vec_element
 (*vec v, size_t idx, data_t *val)
{

if (idx >= v->len)
return 0;

*val = v->data[idx];
return 1;

}

len
data

0 1 len-1

intuition holds if data in
a vec points to array of
length len

intuition holds if val
just points to a data_t,
not an array thereof.

Benchmark Computation

Data Types
Use different declarations for

data_t
int
long
float
double

Operations
Use different definitions of OP and IDENT
 + / 0
 * / 1

typedef vec* vec_ptr;
void combine1(vec_ptr v, data_t *dest)
{
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {

data_t val;
get_vec_element(v, i, &val);
*dest = *dest OP val;

 }
}

in benchmark: compute
sum or product
of vector elements

Benchmark Performance

void combine1(vec_ptr v, data_t *dest)
{
 long int i;
 *dest = IDENT;
 for (i = 0; i < vec_length(v); i++) {

data_t val;
get_vec_element(v, i, &val);
*dest = *dest OP val;

 }
}

Compute sum or
product of vector
elements

Method Integer Double FP

Operation Add Mult Add Mult

Combine1
unoptimized

22.68 20.02 19.98 20.18

Combine1 –O1 10.12 10.12 10.17 11.14

twice as fast

Basic Optimizations

▪ Move vec_length out of loop
▪ Avoid bounds check on each cycle
▪ Accumulate in temporary

void combine4(vec_ptr v, data_t *dest)
{
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

let’s apply the optimizations that
we’ve learned about so far.
(help the compiler help us)

Effect of Basic Optimizations

Eliminates sources of overhead in loop

void combine4(vec_ptr v, data_t *dest)
{
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start(v);
 data_t t = IDENT;
 for (i = 0; i < length; i++)
 t = t OP d[i];
 *dest = t;
}

Method Integer Double FP

Operation Add Mult Add Mult

Combine1 –O1 10.12 10.12 10.17 11.14

Combine4 1.27 3.01 3.01 5.01
order of magnitude
on top of previous
improvement!
(this really pays off!)

if we can do more than 1 op at a time,
then we can go below “1 op per element in sequence” time.

Cycles Per Element (CPE)

▪ Convenient way to express performance of program that operates on vectors or lists
▪ Length = n
▪ In our case: CPE = cycles per OP
▪ T = CPE*n + Overhead

• CPE is slope of line

psum1
Slope = 9.0

 psum2
Slope = 6.0

length of vector

CPU time
(cycles spent)

example of how to present
such a benchmark result:

Modern CPU Design

https://uops.info/background.html#supportedMicroarchitectures

Back End,
linked to
memory

front end
accesses L2 cache.

back end
accesses L1 cache, and if
necessary L2 cache.

execution engine
reorders & schedules instructions
(to different ports.
ports = how many
micro-operations at the same
time. each instruction is 1+
micro-operation. recent version of
ARM processor has 4 ports)

each port is pipelined (stages).

Superscalar Processor

Definition: A superscalar processor can issue and execute
multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are usually
scheduled dynamically.

Benefit: without programming effort, superscalar processor can
take advantage of the instruction level parallelism that most
programs have

Most modern CPUs are superscalar.
Intel: since Pentium (1993)

program instructions
not necessarily
executed in order.

Pipelined Functional Units

▪ Divide computation into stages

▪ Pass partial computations from stage to stage

▪ Stage i can start on new computation once values passed to i+1

• E.g., complete 3 multiplications in 7 cycles, even though each
requires 3 cycles

Stage 1

Stage 2

Stage 3

long mult_eg(long a, long b, long c) {
 long p1 = a*b;
 long p2 = a*c;
 long p3 = p1 * p2;
 return p3;
}

Time

1 2 3 4 5 6 7

Stage 1 a*b a*c p1*p2

Stage 2 a*b a*c p1*p2

Stage 3 a*b a*c p1*p2

example w/
3-stage pipelines.

Cos CPU

07.10.2020 · 34

Sandy Bridge
Pipelines

https://uops.info/table.html?search=ADD&cb_uops=on&cb_ports=on&cb_SNB=on&cb_measurements=on&cb_base=on

4 micro-operations,
executed in parallel.

x86-64 Compilation of Combine4

Inner Loop (Case: Integer Multiply)

.L519: # Loop:
imull (%rax,%rdx,4), %ecx # t = t * d[i]
addq $1, %rdx # i++
cmpq %rdx, %rbp # Compare length:i
jg .L519 # If >, goto Loop

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Latency
Bound

1.00 3.00 3.00 5.00

we are already pretty close to
theoretical bound
w/o using pipelining.
can we get closer?

Combine4 = Serial Computation (OP = *)

Computation (length=8)
 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3])
* d[4]) * d[5]) * d[6]) * d[7])

Sequential dependence
Performance: determined by latency of OP

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

w/o pipelining: serial.
how to do better?
loop unrolling.

Loop Unrolling (2x1)

Perform 2x more useful work per iteration

void unroll2a_combine(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);
 long limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 long i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {

x = (x OP d[i]) OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {

x = x OP d[i];
 }
 *dest = x;
}

we give the CPU
opportunity to run ops in
parallel…

… by combining 2
elements at a time
within 1 iteration of the
loop.

Effect of Loop Unrolling

Helps integer add
Achieves latency bound

Others don’t improve. Why?
Still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Unroll 2x1 1.01 3.01 3.01 5.01

Latency
Bound

1.00 3.00 3.00 5.00

Loop Unrolling with Reassociation (2x1a)

Can this change the result of the computation?
Yes, for FP. Why?

void unroll2aa_combine(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);
 long limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;
 long i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {

x = x OP (d[i] OP d[i+1]);
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {

x = x OP d[i];
 }
 *dest = x;
} x = (x OP d[i]) OP d[i+1];

Compare to before

let’s break
sequential dependency.

Effect of Reassociation

Nearly 2x speedup for Int *, FP +, FP *
Reason: Breaks sequential dependency

Why is that? (next slide)

x = x OP (d[i] OP d[i+1]);

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Unroll 2x1 1.01 3.01 3.01 5.01

Unroll 2x1a 1.01 1.51 1.51 2.51

Latency
Bound

1.00 3.00 3.00 5.00

Throughput
Bound

0.50 1.00 1.00 0.50

2 func. units for FP *
2 func. units for load

4 func. units for int +
2 func. units for load

theoretical bound w/
parallelism taken into
account (how many
ports available, how
many ports each
instruction needs)

Reassociated Computation

What changed:
Ops in the next iteration can be started

early (no dependency)

Overall Performance
N elements, D cycles latency/op
(N/2+1)*D cycles:

CPE = D/2*

*

1

*

*

*

d1d0

*

d3d2

*

d5d4

*

d7d6

x = x OP (d[i] OP d[i+1]);

sequential dependency
broken; can do more
things at the same time.

Loop Unrolling with Separate Accumulators (2x2)

Different form of reassociation

void unroll2a_combine(vec_ptr v, data_t *dest)
{
 long length = vec_length(v);
 long limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 long i;
 /* Combine 2 elements at a time */
 for (i = 0; i < limit; i+=2) {
 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];
 }
 /* Finish any remaining elements */
 for (; i < length; i++) {

x0 = x0 OP d[i];
 }
 *dest = x0 OP x1;
}

can do even better:
two accumulators.
(2 chains instead of 1)

Effect of Separate Accumulators

Int + makes use of two load units

2x speedup (over unroll2) for Int *, FP +, FP *

 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

Method Integer Double FP

Operation Add Mult Add Mult

Combine4 1.27 3.01 3.01 5.01

Unroll 2x1 1.01 3.01 3.01 5.01

Unroll 2x1a 1.01 1.51 1.51 2.51

Unroll 2x2 0.81 1.51 1.51 2.51

Latency Bound 1.00 3.00 3.00 5.00

Throughput Bound 0.50 1.00 1.00 0.50

Separate Accumulators

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

 x0 = x0 OP d[i];
 x1 = x1 OP d[i+1];

⬛ What changed:
▪ Two independent “streams” of

operations

⬛ Overall Performance
▪ N elements, D cycles latency/op

▪ Should be (N/2+1)*D cycles:
CPE = D/2

▪ CPE matches prediction!

What Now?

Unrolling & Accumulating

▪ Idea
Can unroll to any degree L

Can accumulate K results in parallel

L must be multiple of K

▪ Limitations
Diminishing returns

– Cannot go beyond throughput limitations of # ports

Large overhead for short lengths

– Finish off iterations sequentially

how many ops at a time
depends on the ops (how
parallelizable), and number
of ports (resources).

Achievable Performance

Limited only by throughput of functional units
Up to 42X improvement over original,

unoptimized code

Method Integer Double FP

Operation Add Mult Add Mult

Best 0.54 1.01 1.01 0.52

Latency Bound 1.00 3.00 3.00 5.00

Throughput Bound 0.50 1.00 1.00 0.50

Programming with AVX2 SIMD - single instruction
multiple data

SIMD Operations

■ SIMD Operations: Single Precision

■ SIMD Operations: Double Precision

+ + + +

%ymm0

%ymm1

vaddpd %ymm0, %ymm1, %ymm1

%ymm0

%ymm1

vaddsd %ymm0, %ymm1, %ymm1

+ + + + + + + +

add whole vectors,
in 1 instruction. (fast)

Using Vector Instructions

Make use of AVX Instructions
Parallel operations on multiple data elements

See Web Aside OPT:SIMD on CS:APP web page

Method Integer Double FP

Operation Add Mult Add Mult

Scalar Best 0.54 1.01 1.01 0.52

Vector Best 0.06 0.24 0.25 0.16

Latency Bound 0.50 3.00 3.00 5.00

Throughput Bound 0.50 1.00 1.00 0.50

Vec Throughput
Bound

0.06 0.12 0.25 0.12

http://csapp.cs.cmu.edu/3e/waside/waside-simd.pdf

another order of magnitude
improvement

http://csapp.cs.cmu.edu/3e/waside/waside-simd.pdf

Outline

Overview
Optimizations

Code motion/precomputation

Strength reduction

Sharing of common subexpressions

Removing unnecessary procedure calls

Optimization Blockers
Procedure calls

Memory aliasing

Exploiting Instruction-Level Parallelism
Dealing with Conditionals

What About Branches?

Challenge
Instruction Control Unit must work well ahead of Execution Unit

to generate enough operations to keep EU busy

When encounters conditional branch, cannot reliably determine where to
continue fetching

 404663: mov $0x0,%eax
 404668: cmp (%rdi),%rsi
 40466b: jge 404685
 40466d: mov 0x8(%rdi),%rax

 . . .

 404685: repz retq

Executing

How to continue?

Modern CPU Design

Execution

Functional
Units

Instruction Control

Branc
h

Arith Arith Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction OK?

DataData

Addr. Addr.

Arith

Operation Results

Retirement
Unit

Register
File

Register Updates

fetch as much as possible to
keep front end busy.

Branch Outcomes

When encounter conditional branch, cannot determine where to
continue fetching

•Branch Taken: Transfer control to branch target

•Branch Not-Taken: Continue with next instruction in sequence

Cannot resolve until outcome determined by branch/integer unit

Branch Taken

Branch
Not-Taken

 404663: mov $0x0,%eax
 404668: cmp (%rdi),%rsi
 40466b: jge 404685
 40466d: mov 0x8(%rdi),%rax

 . . .

 404685: repz retq

“look, you are going through
a loop. so I am going to
guess ‘true’, and prefetch”

Branch Prediction

▪ Idea
Guess which way branch will go

Begin executing instructions at predicted position

– But don’t actually modify register or memory data

Predict Taken

Begin
Execution

 404663: mov $0x0,%eax
 404668: cmp (%rdi),%rsi
 40466b: jge 404685
 40466d: mov 0x8(%rdi),%rax

 . . .

 404685: repz retq

 401029: vmulsd (%rdx),%xmm0,%xmm0
 40102d: add $0x8,%rdx
 401031: cmp %rax,%rdx
 401034: jne 401029

 401029: vmulsd (%rdx),%xmm0,%xmm0
 40102d: add $0x8,%rdx
 401031: cmp %rax,%rdx
 401034: jne 401029

 401029: vmulsd (%rdx),%xmm0,%xmm0
 40102d: add $0x8,%rdx
 401031: cmp %rax,%rdx
 401034: jne 401029

Branch Prediction Through Loop

 401029: vmulsd (%rdx),%xmm0,%xmm0
 40102d: add $0x8,%rdx
 401031: cmp %rax,%rdx
 401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
vector length = 100

Read
invalid
location

Executed

Fetched

branch mis-prediction
(aka. prediction failure)

 401029: vmulsd (%rdx),%xmm0,%xmm0
 40102d: add $0x8,%rdx
 401031: cmp %rax,%rdx
 401034: jne 401029

 401029: vmulsd (%rdx),%xmm0,%xmm0
 40102d: add $0x8,%rdx
 401031: cmp %rax,%rdx
 401034: jne 401029

 401029: vmulsd (%rdx),%xmm0,%xmm0
 40102d: add $0x8,%rdx
 401031: cmp %rax,%rdx
 401034: jne 401029

 401029: vmulsd (%rdx),%xmm0,%xmm0
 40102d: add $0x8,%rdx
 401031: cmp %rax,%rdx
 401034: jne 401029 i = 98

i = 99

i = 100

Predict Taken (OK)

Predict Taken
(Oops)

i = 101

Assume
vector length = 100

Branch Misprediction Invalidation

Invalidate

pipeline full of invalidated
instructions (mispredict).

Branch Misprediction Recovery

Performance Cost
▪ Multiple clock cycles on modern processor

▪ Can be a major performance limiter

 401029: vmulsd (%rdx),%xmm0,%xmm0
 40102d: add $0x8,%rdx
 401031: cmp %rax,%rdx
 401034: jne 401029
 401036: jmp 401040
 . . .
 401040: vmovsd %xmm0,(%r12)

i = 99 Definitely not taken

Reload
Pipeline

Take-Aways

▪ Leverage good compiler and flags
▪ Don’t do anything stupid

Watch out for hidden algorithmic inefficiencies

Write compiler-friendly code

– Watch out for optimization blockers:
procedure calls & memory references

Look carefully at innermost loops (where most work is done)

▪ Tune code for machine
Exploit instruction-level parallelism

Avoid unpredictable branches

Make code cache friendly (see last week => blocking)

http://csapp.cs.cmu.edu/3e/waside/waside-blocking.pdf

