
Operating Systems and C
Fall 2022, Security-Track
6. Stack-Based Exploits

01.10.2020 · 1

perflab:
● have two matrix multiplication procedures

(rotate, smooth), have to rewrite it.
● about optimization techniques;

blocking, loop unrolling, etc.
attacklab:
● you have an executable, have to attack it.
● about the stack; code injection (smashing the

stack), return-oriented programming (find
interesting code in other programs).

Parallel Tracks

· 2

exciting part of the course!

security-track lecture nr. 1:
what you’ll need for attacklab.

performance-track lecture nr. 2:
what you’ll need for perflab.
optimizations. how to write code so
compiler can derive performant code.
manual transformations, blocking,
loop unrolling

performance-track lecture nr. 1:
what you’ll need for perflab.
array layout, what it means for
performance, cache hierarchy, how
associativity is organized in the
cache. (important stuff for anyone)

Brief review of assembly

Arrays, strings and structs in assembly

Structure of an .s program

Stack-based exploits and counter-measures

Outline

01.10.2020 3

basically
what you need
for the attacklab

(next week: not
important for attacklab
(culture-stuff))

alignment; needed in
assignment

you’ll need to
disassemble a binary

Memory

• Byte addressable array

• Code, user data, (some) OS data

• Includes stack used to support procedures

X86-64 Assembly

09.09.2020 · 4

CPU

Programmer-Visible State

PC: Program counter

• Address of next instruction, 8B

• Called “RIP” (x86-64)

Register file

• Heavily used program data

• Each register contains 8B

Condition codes

• Store status information about
most recent arithmetic operation

• Used for conditional branching

PC
Registers

Memory

Object Code
Program Data
OS Data

Addresses

Data

Instructions

Stack

Condition
Codes

instruction either
● op on registers (state), or
● transfers data to/from mem

recall, what is a
stack (data structure)?
(push, pop)

von Neumann Architecture

The %rip register is the current instruction pointer.
Contains address of next instruction to be executed.

There are 16 general purpose registers in x86-64.
Additional registers for floating point, SIMD, …
16 registers: r0, r1, …, r15

Registers

09.09.2020 · 5

most instructions implicitly increment it.
explicitly updated ⇒ change in control flow.

“register file”

aka. program counter (pc)

10s

For historical reasons, r0-r7 are called original registers.
They have the following names:
• ax: register a
• bx: register b
• cx: register c
• dx: register d

• bp: register base pointer (start of stack)
• sp: register stack pointer (current location in stack, grow downwards)

• si: register source index (source for data copies)
• di: register destination index (destination for data copies)

General-Purpose Registers

09.09.2020 · 6

top & bottom
for a given frame

usually first
parameters of
functions
(if not arrays)

Register values can be accessed at different levels of granularity:
• 8B:

• original registers: prefix r rax, rsp, rsi

• other registers: no suffix r8, r15
• 4B:

• original registers: prefix e eax, esp, esi

• other registers: suffix d r8d, r15d
• 2B:

• original registers: no prefix ax, sp, si

• other registers: suffix w r8w, r15w
• 1B (high byte):

• original registers (bits 8-15 from ax-dx) ah, bh, ch, dh
• 1B (low byte):

• original registers (bits 0-7 from ax-dx) al, bl, cl, dl

• other registers: suffix b r8b, r15b

General-Purpose Registers

09.09.2020 · 7

why: e.g.
C short is 2B

memory is
byte-addressable

Three classes of instructions:
1. Transfer between memory and register

• Load/store data: register <-> memory (e.g. mov)

• Push/pop: register <-> stack

2. Arithmetic and comparison functions

3. Transfer control
• Jumps to/from procedures

• Conditional branches

Instructions

09.09.2020 · 8

we didn’t talk much about
these, except we walked
about how these are built
from logic gates

can loop

can if/then

The GNU tools (gcc, gdb) use AT&T Syntax for
assembly.
example: movq %rsp, %rbp

Syntax is of the form
OPERATOR source, destination

Register names are prefixed with %

The alternative is the Intel syntax (on windows): MOVQ EBP, ESP – no %
Look for % in the assembly code, if they are present you are dealing with AT&T syntax

AT&T syntax

09.09.2020 · 9

never more than 2 operands.
when there are 2, this is the form.

10s

Procedure Call Example

09.09.2020 · 10

0x8048553

0x100%rsp

%rip

%rsp

%rip 0x8048b90

0x108

0x10c

0x110

0x100

0x80854e

1230x108

0x10c

0x110

123

0x108

call 8048b90

804854e: e8 3d 06 00 00 call 8048b90 <main>
8048553: 50 pushl %eax

return address
 = address of next instruction

instruction pointer
updated to callee

top of stack

Procedure Call Example

09.09.2020 · 11

%rsp

0x100

%rsp0x100

0x108

0x10c

0x110

0x8048553

123 0x108

0x10c

0x110

123

ret

8048591: c3 ret

0x108

0x8048553

%rip %rip 0x80485530x8048591

(garbage)

just a pop

Q: what happens
if user input
overwrites stack
pointer, or return
address?
A: user has full
control over
control flow.
(exploit)

Caller:
• Arguments

• pushed by program (if needed)
• Return address

• pushed by call

Callee:
• Previous frame pointer (%rbp)
• Other callee-save registers (%rbx, %r12-15)
• Space for local variables
• Arguments for next function

(when about to call another function)

Stack Frame

09.09.2020 · 12

Return Addr

Saved
Registers
+
Local
Variables

Argument
Build

Old %rbp

Arguments

Caller
Frame

Frame pointer
%rbp

Stack pointer
%rsp

stack frame
● caller’s saved registers(1)

● local vars
● args
● return address(2)

(1) : to restore caller state on return
 (bottom frame has no caller).
(2) : pushes it when it calls
 (top frame does not need this)

extremely important for
assignment; you’ll spend hours
seeing what stack looks like.

Brief review of assembly

Arrays, strings and structs in assembly

Structure of an .s program

Stack-based exploits and counter-measures

Outline

01.10.2020 13

Array Allocation

01.10.2020 · 14

Basic Principle
T A[L];
A is an Array of data type T and length L

Contiguously allocated region of L * sizeof(T) bytes

compiler is going to reserve
space for the array.

examples follow

Array Allocation

01.10.2020 · 15

char string[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16

char *p[3];

x x + 8 x + 16 x + 24

8 bytes = 64 bits
(address size =
 word size)

Array Access

01.10.2020 · 16

int A[5] = {0, 1, 2, 3, 4};
Array of data type int and length 5
Identifier A can be used as a pointer to array element 0: Type int*

Reference Type Value

val[4] int 4

val int * x

val+1 int * x + 4

&val[2] int * x + 8

val[5] int ??

*(val+1) int 1

val + i int * x + 4 i

val from
previous slide

undefined
behavior

Array Example

· 17

#define ZLEN 5
typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36

zip_dig mit; 0 2 1 3 9

36 40 44 48 52 56

zip_dig ucb; 9 4 7 2 0

56 60 64 68 72 76

Declaration “zip_dig cmu” equivalent to “int cmu[5]”
Example arrays were allocated in successive 20 byte blocks

Not guaranteed to happen in general

(ucb = berkeley)

type alias

20 = 5*4

 # rdx = z
movq $0, %rax # %rax = i

.L4: # loop:
addq $1, (%rdx,%rax,4) # z[i]++
addq $1, %rax # i++
cmpl $5, %rax # i:ZLEN (ZLEN==5)
jne .L4 # if !=, goto loop

ARRAY LOOP EXAMPLE (IA32)

void zincr(zip_dig z) {
 int i;
 for (i = 0; i < ZLEN; i++)
 z[i]++;
}

Array Example

$1 is
constant 1

%r is
register r

addressing mechanism:
z + 4*i

Declared as read-only data.

.section .rodata
.Label:

.string ”String constant\n”

Strings

19

1 byte per character,
terminated by \0

we won’t spend more time
on strings, because you
won’t need them in the
assignment.

Structures & Alignment

Unaligned Data

Aligned Data
Primitive data type requires K bytes ⇒

Its address must be multiple of K

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8

Multiple of 8

c i[0] i[1] v

p p+1 p+5 p+9 p+17

struct S1 {
 char c;
 int i[2];
 double v;
} *p;

starting address must be
multiple of K (1, 2, 4, 8, 16, …)

not a power of 2.
moving data in memory,
and to/from register,
is a mess. instead:

gcc stack is 16-byte aligned.
remember that.

whole data structure is
padded up to multiple of its
largest K

Specific Cases of Alignment (x86-64)

• 1 byte: char, …
no restrictions on address

• 2 bytes: short, …
lowest 1 bit of address must be 0

2
• 4 bytes: int, float, …

lowest 2 bits of address must be 00
2

• 8 bytes: double, char *, …
lowest 3 bits of address must be 000

2

Q: but Willard, that’s wasteful.
A: when we talk dynamic
memory allocation (heap), we’ll
see these bits used for
something else (tags).

Meeting Overall Alignment Requirement

For largest alignment requirement K
Overall structure must be multiple of K

struct S2 {
 double v;
 int i[2];
 char c;
} *p;

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

order in descending order of
size makes it easier for
compiler to store your struct
more compactly.

Brief review (x86-64 + ex 3.67)

Arrays, strings and structs in assembly

Structure of an .s program

Stack-based exploits and counter-measures

Outline

01.10.2020 23

what transformation of my
code does my compiler do?
that’s why we want to be able
to read assembly.

Virtual Memory

01.10.2020 · 24

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data

Read-only code and data

Loaded from the
hello executable file

printf function

Program
start

.bss:

.data:

.rodata:

.text:

(uninitialised)

(initialised
 read-write)

(initialised
read-only)

defined, but not
initialized

you have
 different sections
in your assembly program,
which corresponds to
 different regions
in virtual memory.

4 sections

(program)

Object file

01.10.2020 · 25

-h (headers) reveals structure of object file
(the sections, their size, etc.).

Assembly file

01.10.2020 · 26

a function

a function

read-only data

program

read-only data

program

Object file

01.10.2020 · 27

disassemble all sections,
not just those containing instructions

reveals the actual
address of each instruction

last 2 phases of
assignment: need
to use this to find
patterns in the code

Brief review (x86-64 + ex 3.67)

Arrays, strings and structs in assembly

Structure of an .s program

Stack-based exploits and counter-measures

Outline

01.10.2020 28

Vulnerable C code

01.10.2020 · 29

example of vulnerable C code

disable stack protection
(more on that later today)
(so it’s not really a problem
today; compilers prevent
problem by default)

process tried accessing
something outside itself.
what’s happening?
 let’s investigate.

01.10.2020 · 30

The stack is 16B
aligned

=>
rsp is decreased

with 16B
sub $0x10, %rsp

Vulnerable C code push old base pointer
on stack

new base pointer :=
old stack pointer

new stack pointer :=
old stack pointer - 16

enough space for buf

tip: for assignment, always
use objdump. with it, you get
assembly, and the object, and
the address where it is

= %rsp

address of
buff into rax
then into 1st
arg
initialize
return

evict stack frame

Vulnerable code

0x7fffffffe490

0x7fffffffe40AStack Frame
for main

Contents of gets

Before call to gets

0x7fffffffe40A

0x40059c

0x7fffffffe480
gets buffer
8B aligned

return
instruction

so, why vulnerable?

%rbp+1 is return instruction

if I write more than 16 bytes,
then I overwrite return address.
I take over the machine then
(or provoke segmentation fault)

Buffer Overflow Stack Example

0x7fffffffe490

0x7fffffffe40AStack Frame
for main

Contents of gets

Before call to gets

0x7fffffffe40A

0x40059c

0x7fffffffe480

depending on input,
different termination behavior.

Malicious Use of Buffer Overflow

Input string contains byte representation of executable code
Overwrite return address with address of exploit code
When bar() executes ret, will jump to exploit code

int bar() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

void foo(){
 bar();
 ...
}

Stack after call to gets()

B

return
address
A

foo stack frame

bar stack frame

B

exploit
code

paddata written
by gets()

payload:
 exploit code (backwards) ++ pad ++ B

Exploits Based on Buffer Overflows

Buffer overflow bugs allow remote machines to execute arbitrary
code on victim machines

Internet worm

Early versions of the finger server (fingerd) used gets() to
read the argument sent by the client:

•finger droh@cs.cmu.edu
Worm attacked fingerd server by sending phony argument:

•finger “exploit-code padding
new-return-address”

•exploit code: executed a root shell on the
victim machine with a direct TCP
connection to the attacker.

Morris worm, 1988

how to stop this:
● want to make it impossible to

execute code on the stack.
● want to make it hard to figure

out where exploit code starts.
● want to protect return

address.

Avoiding Overflow Vulnerability

Use library routines that limit string lengths
fgets instead of gets
strncpy instead of strcpy
Don’t use scanf with %s conversion specification

•Use fgets to read the string

•Or use %ns where n is a suitable integer

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 fgets(buf, 4, stdin);
 puts(buf);
}

use a function that checks
how much you read.

System-Level Protections

Randomized stack offsets
At start of program, allocate random amount of space on stack

Makes it difficult for hacker to predict beginning of inserted
code

Nonexecutable code segments
In traditional x86, can mark region of memory as either

“read-only” or “writeable”

•Can execute anything readable

X86-64 added explicit “execute” permission

Stack Canaries

Idea
Place special value (“canary”) on stack just

beyond buffer

Check for corruption before exiting function

GCC Implementation
 -fstack-protector
 -fstack-protector-all (default)

Setting Up Canary

echo:
. . .
mov %fs:20, %rax # Get canary
mov %rax, -8(%rbp) # Put on stack
xor %eax, %eax # Erase canary
. . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
%rbp

Stack Frame
for main

Content of gets

Before call to gets

Canary

Saved %rbp

random part of memory into
rax

put canary just below base
pointer

must overwrite canary to
overwrite return address

Checking Canary

echo:
. . .
mov -8(%rbp), %rax # Retrieve from

stack
xor %fs:20, %rax # Compare with

Canary
je .L24 # Same: skip ahead
call __stack_chk_fail # ERROR

.L24:
. . .

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return Address
%rbp

Stack Frame
for main

Content of gets

Before call to gets

Canary

Saved %rbp

%rbp-0x8

%rbp-0x10

Canary
Example

Canary
Example

when compiled w/
protection

GCC protections

Compile-time

Run-time

pretty clear that you
shouldn’t use gets.

goal: tools that developers can use to write secure SW.

sample research (past supervisions):

● analyze binaries for information leaks
● reduce timing leaks in the Linux kernel
● automatically fix vulnerabilities in JavaScript
● automatically generate (i.e. synthesize)

a secure program from formal specification
● assess privacy risk in analytics programs

(data scientists; Google search for “Privugger”)

I like code, and I like proofs.

I created the “Applied Information Security” course.

I’m a barista in Analog.

Willard Rafnsson
IT University of Copenhagen

wilr@itu.dk
https://www.willardthor.com/

formal
methods

programming
languages

computer
security

my
research

shameless self-promotion

Alignment is necessary when working with structs

Object files are sequences of hex codes, that can be
mapped to assembly instructions

Buffer overflows cause vulnerabilities that can be
exploited maliciously

Counter measures include (i) randomized stack
addresses, (ii) non executable code on stack and (iii)
canaries.

Take-Aways

01.10.2020 · 44

