=9 - Bl ¥ L '().f s M
36 | - lny, St . he
Sl SCep. e
in SDF\, tOr‘
33 & e Oc =, m
L Lt Or Ode
34 -} Ba Qo s e
35 OONDAT ;?:: 13,
36 Ste.t A t; >
37 AN Pooes
38 At ic c pzpﬁvectors el L L
3 8] Ctor 5Dhi:ro -
S ext 3 potepone
40 ern void p g
extern ”’W'Shhor
41 VOl(j Dr 01.(22%0‘ “SFV“QIU(i ‘mry n
a eclorl omr,,_:;_‘_';*; :
4% ?\{Iold ihit_ba'lloon(voxd) ok
a4 = S 1;
45
a6 2 balloon. mode-mgc
a7 2 balloon.poes.x= &.
balloon.pos.y=-=-
48 balloon.pos.== &
49 ba'\.IOOn.t'O'OI:
=10 . balloon.sc"“"
5% . (4=0; +<3: ¢ 1
= ’ .-_-‘W
52 L rer (%ol 6, Locality
= i 1100 uf
sS4 | - ‘ gollooﬁ'bb
S>S0\ - .
57 3, et vec)
53 T LG oI T
B Ve PP e (B
1

Operating Systems and C
Fall 2022, Performance-Track

01.10.2020 -1

" performance-track lecture nr. 1:
Parallel Tracks |G Rt oot
array layout, what it means for

performance, cache hierarchy, how
perflab: cache. (mportant stuftfor anyone)
® have two matrix multiplication procedures
(rotate, smooth), have to rewrite it.

o about Opt|m|zat|on teChanueS, performance-track lecture nr. 2:

what you’ll need for perflab.

. . optimizations. how to write code so
b | OCk| ng, |OO p un r0| | | ng, Etc- compiler can derive performant code.
manual transformations, blocking,
attaCkIab: loop unrolling

® you have an executable, have to attack it.
® about the stack; code injection (smashing the
stack), return-oriented programming (find
interesting code in other programs). [;i‘;‘;ry‘x‘,}{‘;‘;';c',eff;“;;;;ﬁ,;;_ }

IT UNIVERSITY OF COPENHAGEN

security-track lecture nr. 2:
Linux culture.

* Locality

* Memory Hierarchy
* Cache Utilization

e A note on Security

IT UNIVERSITY OF COPENHAGEN

J i m G ray 2006 http://jimgray.azurewebsites.net/jimgraytalks.htm
’

Tapeis Dead HSSEEEEE
Disk is Tape
Flash is Disk

RAM Locality is King <

Jim Gray ﬁ vanished w/o trace in 2007]
Microsoft

December 2006

IT UNIVERSITY OF COPENHAGEN

. http://jimgray.azurewebsites.net/jimgraytalks.htm
Jim Gray, 2006
% layout of data in memory]

RAM Locality is Klng

* The cpu mostly waits for RAM

* Flash / Disk are
100,000 ...1,000,000
clocks away from cpu

* RAM is ~100 clocks away
unless you have locality (cache).

« If you want 1CPI (clock per instruction)

you have to have the data in cache
(program cache is “easy”)

 This requires cache conscious
data-structures and algorithms

=T Storage Price vs Tl;ne
1E+6
KB/$
1E+5
__/ ,1100:1
- Dnsk/(/;A"w
e =
A\
7 |
1975 1980 1985 19 2000 20¥ 2010]

sequential (or predictable) access patterns
« Main Memory DB is going to be common.

IT UNIVERSITY OF COPENHAGEN

D ata SySte ms G rou p P rom Ot | on microarchitectural analysis,

benchmarking, ...

how resources are used.
(how much time CPU spends
waiting for memory?)

BSTREX i L1-1 L1-D L2
@sLicc) 18 1 2.4 1

2.2
DADDICT 16 5 o]
14 1 18
27 1.2 - 1.6 -
: 1 1 AL MH. 14 -
1.2
g | 0.8 - .
) 0.6 0.8
2 0.4 - 0.6 4
=] 0.2
e e 0) 0 - /IR
Q o
@) Q 0
= B

)
o
)

Misses per k-Instructions
(Normalized over Baseline

o o o

o N » (o))
TPC-B m —

PINAR TOZUN

Associate Professor

IT UNIVERSITY OF COPENHAGEN 01.10.2020 - 6

Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

Temporal locality: O

Recently referenced items are likely
to be referenced again in the near future

C

Spatial locality:

ltems with nearby addresses tend
to be referenced close together in time

IT UNIVERSITY OF COPENHAGEN

Locality Example

sum = 0;

for (1 = 0; 1 < n; i++)
sum += al[i];

return sum;

Data references

Reference array elements in succession
(stride-1 reference pattern).

Reference variable sum each iteration.
Instruction references

Reference instructions in sequence.
Cycle through loop repeatedly.

IT UNIVERSITY OF COPENHAGEN

Spatial locality

Temporal locality

Spatial locality

Temporal locality

Qualitative Estimates of Locality

Claim: Being able to look at code and get a qualitative sense of
its locality is

Question: Does this function have good locality with respect to

array a”?
int sum array rows (int a[M] [N]) int sum array cols(int a[M] [N])
{ {
int i, j, sum = 0; int i, j, sum = 0;
for (1 = 0; 1 < M; i++) for (J = 0; 3 < N; J++)
for (J = 0; 3 < N; J++) for (1 = 0; i < M; 1i++)
sum += al[i][7]; sum += al[i]l[3];
return sum; return sum;
} }

ﬁ Q: which is faster?

IT UNIVERSITY OF COPENHAGEN

Memory Hierarchies

 Some fundamental and enduring properties of hardware and
software:

* Fast storage technologies cost more per byte, have less capacity, and
require more power (heat!).

* The gap between CPU and main memory speed is widening.
* Well-written programs tend to exhibit good locality.

* These fundamental properties complement each other
beautifully.

* They suggest an approach for organizing memory and storage
systems known as a memory hierarchy.

IT UNIVERSITY OF COPENHAGEN

J i m G ray 2006 http://jimgray.azurewebsites.net/jimgraytalks.htm
’

Tape is Dead

Disk is Tape

Flash is Disk
RAM Locality is King

Jim Gray
Microsoft

Decem ber 2006 how is data transferred from

e secondary storage to
memory, and
e memory to registers?

IT UNIVERSITY OF COPENHAGEN

/O Bus

A bus is a collection of parallel
... Wires that Carry address’ data’ and COﬂtrOl Signals.
: Buses are typically shared by multiple devices.

% | U :
: : System bus Memory bus
_ ' /O Main
Bus interface) memor
; bridge

l | | | /O bus | | Expansion slots for
other devices such

USB Graphics Disk as network adapters.
controller adapter controller

Mouse Keyboard Monitor !
Disk
IT UNIVERSITY OF COPENHAGEN

Reading a Disk Sector (1)

CPU chip

Register file

Bus interface

CPU initiates a disk read by
writing a command, logical block
number, and destination memory
address to a port (address)
associated with disk controller.

Main
memor

y

< I/O bus >
4L 4 L NS
USB Graphics Disk
controller adapter controller
mouse keytIoard Monitor :

IT UNIVERSITY OF COPENHAGEN

Reading a Disk Sector (2)

CPU chip

Register file

Bus interface <:>

Disk controller reads the
sector and performs a direct
memory access (DMA)
transfer into main memory.

—— N

N/

Main
memor
y

P o

>

0

<

IT UNIVERSITY OF COPENHAGEN

USB Graphics
controller adapter
Mouse Keyboard Monitor

<

Di sk
cont oller

-

note: CPU is not
involved in this.

|

Reading a Disk Sector (3)

CPU chip

Register file

When the DMA transfer
completes, the disk controller

notifies the CPU with an
interrupt (i.e., asserts a
special “interrupt” pin on the

CPU)
: Main
Bus interface . memor
y
< ﬁ ﬁ l/O bus
USB Graphics Disk
controller adapter controller
Mouse Keyboard Monitor !

IT UNIVERSITY OF COPENHAGEN

-

we’ll learn about
interrupts in future
lecture

|

>

Solid-State Drives

unchanged for a
long time. let us

disks w/ SSDs.

Scheduling

replace mechanical

y

& Mapping

Logical address space

Garlpage Wear
collection Leveling

IT UNIVERSITY OF COPENHAGEN

Physical address space

but SSDs are very
different (have a
controller).

Read
Program
Erase

Channels

Chip — | Chip 4 | Chip — | Chip

Chip — | Chip 4 | Chip — | Chip

Chip — | Chip — |Chip — | Chip —

Flash memory array

Open-Channel SSDs: Design Space

computational
storage: move
processing to
storage devices!

Host System

FTL —

I Logical Addressing
(Read/Write)

1 MediaController [

Solid-State Drive

Block Metadata

Write Buffering

Wear-leveling

Error Handling

Non-Volatile Media

Host System

Block Metadata

Write Buffering

Wear-leveling

I Physical Addressing
(Read/Write /Erase)

Open-Channel
Solid-State Drive

Error Hand ling

1 MediaController [

Non-Volatile Media

Wear-leveling

Error Handling

Media Controller

Non-Volatile Media

LightNVM separates
(application-customisable) front-end SSD management

(media-specific) back-end SSD management.

Mathias Bjgrling, \
PhD at ITU,
upstreamed Linux
driver. Now used

by Google,

Host SyStem Amazon, Intel,
__________________________ Alibaba, Microsoft,
i Write Buffering ¢| & J
Lot eesessssoseossecnsansessal
. = Idea: separate
I Physical Addressing | font-end and
v (Read/Write/Erase) | back-end SSD
\management.)
Open-Channel p o
Solid-State Drive switching to...
NVMe
Block Metadata (controlled by Intel)

-

Programming the Storage Controller

Basic Argument for x-Disks

Put Everything _ .
. . ® Future disk controller is a super-computer.
in Future (Disk) Controllers 31 bips processor
T 1T LI PR o 1 » 128 MB dram
(It s not “if ’ it’s “when) » 100 GB disk plus one arm
Jim Gray s

® Connects to SAN via high-level protocols
» RPC, HTTP, DCOM, Kerberos, Directory Services,....
» Commands are RPCs
»»management, security,....

» Services file/web/db/... requests
» Managed by general-purpose OS with good dev environment

http://www.research.Microsoft.com/~Gray

Acknowledgements:
Dave Patterson explained this to me a year ago
Kim Keeton] [

Erik Riedel (JHelped me sharpen

- :
{fisge-argumente [Move apps to disk to save data movement]

Catharine Van Ingen »need programming environment in controller

Niclas works
(worked?) on this!

Jim Gray, NASD Talk, 6/8/98
http://jimgray.azurewebsites.net/jimgraytalks.htm

IT UNIVERSITY OF COPENHAGEN -18

http://jimgray.azurewebsites.net/jimgraytalks.htm

Data Systems Group Promotion

Computational Storage

By offloading processing to storage, we can deal
efficiently with very large volumes of stored data. We
work with prototypes composed of Open-Channel
SSDs and a programmable storage controller (i.e., a
Linux-based ARM processor) integrated into a network
switch. Topics for thesis include (1) key-value store on
the storage controller, (2) evaluation of T00GE RPC,
and (3) application-specific FTL.

FPGA-based Hardware Acceleration

Field Programmable Gate Arrays are now an integral
part of public cloud infrastructures. You can for
example run customized FPGA instances on AWS. A
project focuses on FPGA-based hardware acceleration
at the level of an SSD Flash Translation Layer, at the
level of a Database storage manager or at the level of ¢
the database client. You will be able to experiment with
FPGAs in the lab and on AWS.

PHILIPPE BONNET

Professor

IT UNIVERSITY OF COPENHAGEN

01.10.2020 - 19

Memory Read Transaction (1)

CPU places address A on the memory bus.

Register file
%eax % /|

B8

IT UNIVERSITY OF COPENHAGEN

Bus interface <:::>

Load operation: movl A, %eax

Main memory
I/O bridge 0

A
N S

Memory Read Transaction (2)

Main memory reads A from the memory bus, retrieves word X,
and places it on the bus.

Register file \ Load operation: movl A, %eax
Y

%eax <:_| U

ﬁ Main memory
0

I/0O bridge X
| 1 N |—9‘| S N
Bus interface |\ — /] N—— X A

IT UNIVERSITY OF COPENHAGEN

Memory Read Transaction (3)

CPU read word x from the bus and copies it into register %eax.

Register file

%eax X

=

==

Bus interface

IT UNIVERSITY OF COPENHAGEN

Load operation: movl A, %eax

Main memory

I/O bridge

—>

0

A

Memory Write Transaction (1)

CPU places address A on bus. Main memory reads it and waits
for the corresponding data word to arrive.

Register file

/

%eax v <::|

1L

Bus interfase

IT UNIVERSITY OF COPENHAGEN

I/O bridge 0
| —'\

|\|—|/| |\|— A

Store operation: movl %eax, A

Main memory

Memory Write Transaction (2)

CPU places data word y on the bus. Main memory
reads data word y from bus and stores it at address A.

Register file Store operation: movl %eax, A
)AL
Yeax /1 U

ii

Main memory
/O bridge 0

Bus interface

A Ny N

IWV A

IT UNIVERSITY OF COPENHAGEN

organized is as an
array of “supercells”

Conventional DRAM Organization ﬁthewayRAMis }

d * w DRAM:

dw total bits organized as d supercells of size w bits

16 x 8 DRAM chip

supercell
(@21

controller
(to/from CPU)

of translations data
between addresses
& physical storage

IT UNIVERSITY OF COPENHAGEN

Econtroller takes care

i rows
Memory ! 2 |

this is actually a
myth; local network
faster than some
local disks.

An Example Memory Hierarchy

LO:

. CPU registers hold words retrieved
eglsters

from L1 cache

L1: L1 cache
Smaller (SRAM) L1 cache holds cache lines retrieved
! from L2 cache

faster,
i L2:
costlier L2 cache
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:
Main memory
L;‘:\rger, (DRAM) Main memory holds disk blocks
slower, retrieved from local disks
cheaper
per byte L4: Local secondary storage Local disks hold files
(local disks) retrieved from disks on
remote network servers
L5 Remote secondary storage

v (tapes, distributed file systems, Web servers)

IT UNIVERSITY OF COPENHAGEN

car mechanic

analogy

IT UNIVERSITY OF COPENHAGEN

Cache: A smaller, faster storage device that acts as a staging area
for a subset of the data in a larger, slower device.
Fundamental idea of a memory hierarchy:

* For each k, the faster, smaller device at level k serves as a
cache for the larger, slower device at level k+1.
Why do memory hierarchies work? Because locality.

* Programs tend to access the data at level k
more often than they access the data at level k+1.

* Thus, the storage at level k+1 can be slower, and thus larger
and cheaper per bit.
Big Idea: Memory hierarchy creates a large pool of storage that
costs as much as the cheap storage near the bottom, but serves
data to programs at the rate of the fast storage near the top.

General Cache Concepts P]ﬁéﬁﬁé“k‘;fya‘i’:‘.’ﬂe‘;‘f"

of size 64 bytes.

number represents)
requested memory
location
= Smaller, faster, more expensive
Cache 4 9 10 3 memory caches a subset of
the lines
Data is copied in line-sized
10 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “lines”

4 5 6 7

8 9 10 11

12 13 14 15

® e o o o o o o

IT UNIVERSITY OF COPENHAGEN

General Cache Concepts: Hit

Request: 14

Cache 8 9 14 3
Memory 0 1 2 3
4 5 6 7

8 9 10 11

12 13 14 15

IT UNIVERSITY OF COPENHAGEN

Data in line b is needed

line b is in cache:
Hit!

General Cache Concepts: Miss

Request: 12
Cache 8 12 14 3
12 Request: 12
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
o o o

IT UNIVERSITY OF COPENHAGEN

Data in line b is needed

Line b is not in cache:
Miss!

Line b is fetched from
memory

Line b is stored in cache
*Placement policy:
determines where b goes
*Replacement policy:
determines which block
gets evicted (victim)

General Caching Concepts: Types of Cache Misses

Cold (compulsory) miss

Cold misses occur because the cache is empty.
Conflict miss

Most caches limit lines at level k+1 to a small subset (sometimes a
singleton) of the line positions at level k.

* E.g. Line i at level k+1 must be placed in line (i mod 4) at level k.

Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k line.

* E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
Capacity miss
Occurs when set of active cache lines (working set) is larger than the cache.

placement policy
thrashing = every
access misses.

avoids conflict misses

IT UNIVERSITY OF COPENHAGEN ifep',acement_ policy care, to
avoid capacity misses.

Examples of Caching in the Hierarchy

than L1 cache.

ex: access to memory is
100x more expensive

|

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By
Registers 4-8 bytes words CPU core 0 | Compiler
TLB Address translations | On-Chip TLB 0 [Hardware
L1 cache 64-bytes line On-Chip L1 1 | Hardware
L2 cache 64-bytes line On/Off-Chip L2 10 | Hardware
Virtual Memory 4-KB page Main memory 100 | Hardware + OS

Buffer cache

Parts of files

Main memory

100

0OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

IT UNIVERSITY OF COPENHAGEN

Cache Memories

Cache memories are small, fast SRAM-based memories managed

automatically in hardware.

given some data,
where is it going to be located?

] |

Hold frequently accessed blocks of main memory
CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.

Typical system structure:

Register file

€Cache
memorie <:>

IT UNIVERSITY OF COPENHAGEN

=l
ﬁ : :S/ystem bus Memciry bus

Bus interface <:>

1/0O
bridge

K—>

Main
memo
ry

General Cache Organization (S, E, B)

organization of a cache.
have S sets, and E lines.

E = 2° lines per set

A
r Y
4 set
[) []
line
[) []
S$=2° sets< o o
e o ° e o o o o o o
[) []
\.
Cache size:
\ tag 1 A - - B-1 C: SX EX B thG byteS
valid bit ~— —

IT UNIVERSITY OF COPENHAGEN

B = 2° bytes per cache line (the data)

Cache Read ——

*Check if any line in set
has matching tag

E = 2° lines per set *Yes + line valid: hit
e Al <~ «Locate data starting
e at offset
[J []
Address of word:
¢ ° t bits s bits | b bits
= 9s M~—~—
S = 2" sets 4 ¢ ° tag set block
index offset
[J [J [J [] ([J [J [J [] ([J
[J []
\
e set-index to find the set,
v tag 1. B-1 e tagto find the right line in set
(compare w/ each line; linear search)
lid bi 7 e we find our data based on offset within line.
valid bit ~"

IT UNIVERSITY OF COPENHAGEN

B = 2° bytes per cache line (the data)

Direct-Mapped Cache Simulation woaskoribye,
ut we transfer 1 line at a time.

t=1 s=2 b=1

IT UNIVERSITY OF COPENHAGEN

here, a line is 2 bytes.

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Set 0
Set 1
Set 2
Set 3

set (0..3)

acel(reads, one byte per read):

0 @Oz], miss
1 [0@12], h.it
7 [011 12]’ miss
8 [1@02], miss
0 [0@02] miss
v Tag Block
0 M[0-1]
1 0 M[6-7]

Why index with the middle bits?

00
01
10
1.1

4-set cache

w0

NN

ﬁvery cell on the \

right is 1 byte.
line size 2 bytes.

Q: which indexing
strategy is best?

b

IT UNIVERSITY OF COPENHAGEN

0000
0001
0010
0011
0100
0101
0110

High-order

bit indexing

G
00
4
v

N
N

N

Middle-order
bit indexing
0000 7277
0001 77
0010
0011
0100
0101
0110 NN
o111 NN
1000 W/
1001 7/
1010
1011
1100
1101
1110
ik 0

A

Set index bits

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1GIL
1100
Wi 11
1110

il ol
—— A

Low-order
bit indexing

=\

N\,

N\

Why index with the middle bits?

00
01
10
1.1

4-set cache

w0

NN

ﬁvery cell on the

access

IT UNIVERSITY OF COPENHAGEN

right is 1 byte.
line size 2 bytes.

Q: which indexing
strategy is best?

hint: sequential

0000
0001
0010
0011
0100
0101
0110

High-order

bit indexing

G
00
4
v

N
N

N

Middle-order
bit indexing
0000 7277
0001 77
0010
0011
0100
0101
0110 NN
o111 NN
1000 W/
1001 7/
1010
1011
1100
1101
1110
ik 0

A

Set index bits

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1GIL
1100
Wi 11
1110

il ol
—— A

Low-order
bit indexing

=\

N\,

N\

Why index with the mi' @étfe =] @gﬁgutmzed

High-order Middle-order Low-order
bit indexing bit indexing bit indexing
0000 77727 0000 7777 0000
tetenre | 0001 A o001 777 oo
. 0010 77 0010 0010
00 77 0011 7277 oo 0011 N
o 0100 0100 0100 ¥/
10
SEEEEEEE 0101 0101 0101 |
~ da =V ~ L
11 NN 0110 0110 NNy 0110
0111 0111 NNy 0111 N
ﬁa'verycell on the \ 1000 1000 7 1000 7/
i size 2 bytes 1001 1001 7] 1001
1010 1010 1010
Q: which indexing 1011 1011 1011 Q
trat is best? T —
e 1100 NN 1100 1100 %
s SSEEREE 1101 NN 1101 1L,
113 | N iy 1110
i1dd 1111

TN

A

Array Allocation

compiler is going to reserve
space for the array.

Basic Principle
T A[L];
A is an Array of data type T and length L
Contiguously allocated region of L * sizeof (T) bytes

examples follow

IT UNIVERSITY OF COPENHAGEN

Array Allocation

char string[l2]:;
X x+12
16t sedl [5] ;5
X X+4 X+8 x+12 x+16 x+ 20
double a[3];
X x+8 x+16 xJ24
char *p[31: * *
X x+8 x+16 X+ 24

8 bytes = 64 bits
(address size =
word size)

IT UNIVERSITY OF COPENHAGEN

int A[5] = {0, 1, 2, 3, 4};
Array of data type int and length 5

Identifier A can be used as a pointer to array element 0: Type intlval from

previous slide

Reference Type Value
val[4] int 4
val int * X
val+l int * X+4
fvatlz] int = 8 Aggggﬁgf
val[5] int ??
* (val+l) int 1
val + i int * X+4i

IT UNIVERSITY OF COPENHAGEN

Array Example

#define ZLEN 5
typedef int zip_dig[ZLEN];
zip_dig cmu = { 1, 5, 2, 1, 3 };
zip dig mit = £ @, 2, 1, 3, 9 }:
zip_dig ucb = { 9, 4, 7, 2, 0 },;
[,//:2?;;557?» zip_dig cmu; 1 5 2 1 3
(ucb = berkeley) A A A A A
g 16 20 24 28 32 36
zip_dig mit; 0 2 1 3 2
A A A A A
36 40 44 48 52 56
zip_dig ucb; 9 4 Z 2 0
A A A A A
56 60 64 68 72 76

Declaration “zip_dig cmu” equivalentto “int cmu[5]”
Example arrays were allocated in successive 20 byte blocks
IT UNIVERSITY OF COPENHAGEN “

N At acriarrant
INND) o AIraAni
i ‘j U [;, g.' “_J didll

~AarN A IharnnmnaAam 1n ~m s 3
eed to happen in general .17

Array Example

void zincr(zip dig z)
int i,
for (1

z[1]++;

0;

1 < ZLEN;

{

i++)

(. .
addressing mechanism:
Lz + 4%

rdx z
movqg

.L4:
addg
addg
cmp Ll
Jne

L4

S0, %Srax
$1, (%rdx, %rax,4)
S1, %rax
$5, %Srax

srax 1

loop:

z[1]++

1L -FF

1:ZLEN (ZLEN==5)
if , goto loop

f
id
id
id
id
id

IT UNIVERSITY OF COPENHAGEN

%r is
register r

A Higher Level Example

int sum array rows (double a[10][10])
{

int i, j;

double sum = 0;

for (1 = 0; 1 < 16; i++)
for (J = 0; j < 16; J++)

g p
$1 = (double *) Ox7fffffffe210

sum += afi][J]; (gdb) p &(al@][1])
return sum; $2 = (double *) Ox7fffffffe2l8
} (gdb) p &(al[1]1[0])
$3 = (double *) Ox7fffffffe260
. (gdb) p &(a[9][91])
int sum array_cols(double a[10][10]) $4 = (double *) Ox7fffffffe528
{
int i, J; [notinth_esame line
double sum = 0;: as previous two
for (J = 0; 1 < 16; 1i++)

for (1 = 0; j < 16; j++)
sum += ali]l[J];
return sum;

IT UNIVERSITY OF COPENHAGEN

in perflab, use debugger to find
out how my data structure is
layed out.

What about writes?

Multiple copies of data exist:
L1, L2, Main Memory, Disk

What to do on a write-hit?
(write immediately to memory)

Write-back (defer write to memory until replacement of line)

— Need a dirty bit (line different from memory or not)
What to do on a write-miss?

Write-allocate (load into cache, update line in cache)
— Good if more writes to the location follow

(writes immediately to memory)
Typical

Write-through + No-write-allocate
Write-back + Write-allocate

IT UNIVERSITY OF COPENHAGEN

Intel Core i7 Cache Hierarchy

Processor package

Access: 30-40 cycles

L3 unified cache
(shared by all cores)

Line size: 64 bytes for all
caches.

. Core 0 Core 3 E L1 i-cache and d-cache:
| Regs Roqs ! 32 KB, 8-way,

i J J : Access: 4 cycles

| 1 1 : o .

: dcach | | L1h dcach | | L1h L2 unified cache:

i N i-cache N i-cache ! 256 KB, 8-way,

: ! Access: 11 cycles
i L2 unified cache L2 unified cache i L3 unified cache:

| : 8 MB, 16-way,

Main memory

IT UNIVERSITY OF COPENHAGEN

Cache Performance Metrics 15

* Miss Rate
* Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate

e Typical numbers (in percentages):
— 3-10% for L1
— can be quite small (e.g., < 1%) for L2, depending on size, etc.

e HitTime
 Time to deliver a line in the cache to the processor
— includes time to determine whether the line is in the cache
e Typical numbers:
— 1-2 clock cycle for L1
— 5-20 clock cycles for L2

* Miss Penalty
* Additional time required because of a miss
— typically 50-200 cycles for main memory (Trend: increasing!)

IT UNIVERSITY OF COPENHAGEN

Latency Numbers Every Programmer Should Know

we’ve seen this.
penalty: from 1 to 100.
huge difference.

Latency Numbers Every Programmer Should Know

2020

] ins u Main memory reference: Send 2,000 bytes over Read 1,000,000 bytes

100ns commodity network: 44ns sequentially from SSD:

49,000ns = 49us
" L1 cache reference: 1ns mEEmmmEEEE 1,000ns ~ 1ps og SSD random read: 16,000ns =
16ps G Disk seek: 2,000,000ns = 2ms
[1111 i ict:
Branch mispredict: 3ns ========== Compress 1KB wth Zippy:

~ | Read 1,000,000 bytes
200006/ 2 sequentially from memory:
uEEE L2 cache reference: 4ns 3,000ns ~ 3us
B 10,000ns = 10pys = ®

B Read 1,000,000 bytes
sequentially from disk:
825,000ns = 825us

Round trip in same datacenter:
500,000ns = 500us

Packet roundtrip CA to
Netherlands: 150,000,000ns =
150ms

Mutex lock/unlock: 17ns

100ns = =
1,000,000ns = 1ms = W

https://colin-scott.github.io/personal_website/research/interactive_latency.html

01.10.2020 - 49

IT UNIVERSITY OF COPENHAGEN

Lets think about those numbers

Huge difference between a hit and a miss

Could be 100x, if just L1 and main memory

Would you believe 99% hits is twice as good as 97%?

Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

This is why “miss rate” is used instead of “hit rate”

IT UNIVERSITY OF COPENHAGEN

Arrays and Cache Metrics [skip

C arrays allocated in row-major order

e each row in contiguous memory locations
Stepping through columns in one row:

e for (i = 0; 1 < N; i++)
sum += a[0][1];
* accesses successive elements
* if block size (B) > 4 bytes, exploit spatial locality

compulsory miss rate = 4 bytes / B
Stepping through rows in one column:

e for (1 = 0; 1 < n; 1i++)
sum += al[i][0];
e accesses distant elements
* no spatial locality!
compulsory miss rate = 1 (i.e. 100%)

IT UNIVERSITY OF COPENHAGEN

Writing Cache Friendly Code

Make the common case go fast

Repeated references to variables are good (temporal locality)
Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

IT UNIVERSITY OF COPENHAGEN

Locality Example #1 105

Question: Can you permute the loops so that the function scans
the 3-d array a with a stride-1 reference pattern (and thus
has good spatial locality)?

int sum array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (i = 0; 1 < M; i++)
for (J = 0; J < N; J++)
for (k = 0; k < N; k++)
sum += a[i][k][]];
return sum;

IT UNIVERSITY OF COPENHAGEN

Locality Example #2

Assume:
Line size = 32B (big enough for four 64-bit words)
Matrix dimension (N) is very large
* Approximate 1/N as 0.0
Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

‘I R

IT UNIVERSITY OF COPENHAGEN A B C

Matrix Multiplication

G
H =
(& | I)N
o

3 7 8 58
X|9 10

1
D =
o N
w

7 8 58 64
6 | X9 10

11 @8]

01.10.2020 - 55

IT UNIVERSITY OF COPENHAGEN

Matrix Multiplication Example

Description:
Multiply N x N matrices
O(N?3) total operations
N reads per source element

N values summed per
destination

* but may be able to hold in
register

IT UNIVERSITY OF COPENHAGEN

/* 1k */

for (i=0; i<n; i++)
for (j=0; j<n; Jj++)
sum = O.O;<<

Variable sum
held in register

</

sum += al[i] [k]

c[i][J] = sum;

}

for (k=0; k<n; k++)

* blk][3]:

Matrix Multiplication (ijk)

/* 1ijk */

. . . Inner loop:
for (1=0; i<n; 1i++) {

()

sum += al[i][k] * b[k][]];

wise

Misses per inner loop iteration:
A B C
0.251.0 0.0

IT UNIVERSITY OF COPENHAGEN

for (3=0; j<n; J++) { (*,j)
sum = 0.0; g ‘I
for (k=0; k<n; k++) (L*)
A B
c[i][J] = sum; T T
}

Row-wise Column-

C

T

Fixed

Matrix Multiplication (jik)

/* Jik */

Inner loop:
for (3=0; j<n; J++) {

for (i=0; i<n; i++) { (*,i)
sum = 0.0;
for (k=0; k<n; k++) (i,%)
A B

sum += a[i]l[k] * b[k][]];

c[i] [J] = sum T T
}

wise

Misses per inner loop iteration:

A B C
0.251.0 0.0

IT UNIVERSITY OF COPENHAGEN

(i)

Row-wise Column-

C

T

Fixed

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {

for (1=0; i<n; i++) { (i,k) (k,*)
1 Tk1; o (i,*)
HTE ' . B C

Inner loop:

A

!

Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C
0.0 0.250.25

IT UNIVERSITY OF COPENHAGEN

Matrix Multiplication (ikj)

/* ikj */
for (1i=0; i<n; i++) {

for (k=0; k<n; k++) { (i k) (k,*)
r = alil [k]; n E ' g(h*)
B C

for (3J=0; j<n; Jj++) A

bt

Fixed Row-wise Row-wise

Inner loop:

cli][J] += r * blk][]];

Misses per inner loop iteration:
A B C
0.0 0.250.25

IT UNIVERSITY OF COPENHAGEN

Matrix Multiplication (jki)

7% 5ki %/ Inner loop:
for (j:O,' j<l’l,‘ j++) { (*,k) (*,J)
for (k=0; k<n; k++) { :
o ” (k,j) H
' [. ' .
A B C
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

IT UNIVERSITY OF COPENHAGEN

Matrix Multiplication (kji)

7% k31 */
for (k=0; k<n;
(5=

k++) {

for j<n; J++) {

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

IT UNIVERSITY OF COPENHAGEN

Inner loop:

(*,k)

Hi

A

T

Column-
wise

(k,j)
[

B

T

Fixed

(*,?')

C

T

Column-
wise

Summary of Matrix Multiplication

K as inner loop

j as inner loop

| as inner loop

IT UNIVERSITY OF COPENHAGEN

for (i=0; i<n; i++) {
for (3=0; j<n; J++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][J];
c[i][J] = sum;
}
}

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {
r = alil [k];
for (3=0; j<n; j++)
c[i][J] += ¢ * b[k]I[J];

;oJ<n; J++) |
; k<n; k++) {

ijk (& jik):
¢ 2 loads, O stores
* misses/iter = 1.25

kij (& ikj):
¢ 2 |loads, 1 store
e misses/iter = 0.5

jki (& kji):
¢ 2 loads, 1 store
e misses/iter = 2.0

Core i7 Matrix Multiply Performance

g0
— r-t-]l .k‘l: . ..'#7' 1 "; B '{’
c 50| o IREY KIS = -
o
.;
o
Q 4014
=
o
o)
O 30/
| S
Q
c
£ 20
-
®
o
(7)))
o 0 |
o X o L) E/AN1 4 e —
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

IT UNIVERSITY OF COPENHAGEN

Array size (n)

- ki

2K

ek

=ik
+Ki

- =ik

ﬁ a note on security]

Attacks: Side-Channel

Sharing is a Vulnerability

attackers exploit sharing.

if A & B share E,
A can observe/affect B through E.

different attacks depending on what is shared

fundamental tension:
security (isolation) vs.
performance (sharing)

e hardware
e network
e physical world (air-gap)

“somebody toucha
my spaghet!”

Attacks: Side-Channel - Hardware

Imitating the Ideal

ideal computer: infinite cores, infinite memory.

fake it

e OS multitasking time-sharing
e memory hierarchy space-sharing

important process requirement: isolation.
processes share resources.

isolation can be violated! (Unintended communication/interference)

Attacks: Side-Channel - Hardware

How It Works

World Sherlock

Can | use that resource?
N\[o}
Why not?

Bob's process is using it.

Why is Bob's process using it?
Because Bob's process took the then-branch (not else) in procedure-

Aha! From this, | conclude...!

Attacks: Side-Channel - Hardware - CPU

CPU Timing Attacks

Attack: Process A monitors the CPU
load of Process B.

table of processes,
task manager

x * top
e High CPUload = 1 ol top
top - 12:19:31 up 5 days, 21:50, 1 user, load average: 78, 1.51, 1.48
: Tasks: 363 total, 1 running, 361 sleeping, @ stopped, 1 zombie
[] LOW CPU IOad 0 ®Cpu(s): 23.5 us, 2.3 sy, 0.8 ni, 74.1 id, 6.8 wa, 0.0 hi, 0.8 si, 0.8 st
K1E Mem . 16366048 total, 3774600 free, 10387952 used, 2283496 buff/cache
KiB Swap: 16715772 total, 159808796 free, 734976 used. 5009040 zvail Menm
. 1+ PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
AttaCk' Race Condltlons' 4467 jack 20 B 2296232 58652 1576 S 1606.6 0.4 5951:21 insync
7929 jack 20 @ 3586296 202328 63948 § 44.2 1.2 0:08.90 chrome
8816 jack 208 B 1423868 315632 93672 § =z5.z 1.9 8:88.69 chrome
1752 root 20 @ 478228 176588 91744 S 9.8 1.8 215:57.76 Xorg
2684 jack 29 @ 1747468 497856 47872 S 6.6 3.8 198:28.39 gala
15522 jack 29 9 3399668 572868 157284 S 4.3 3.5 135:33.46 firefox
7613 jack 20 0 1348924 252020 131584 S 3.7 1.5 8:10.19 chrome
WhO writes to 5267 jack 268 8 547732 427128 32744 S 2.7 8.3 6:84.96 pantheon-termin
18445 jack 20 0 3656460 169844 16336 S 2.8 1.8 136:31.88 clementine
storage first 15591 jack 20 B 3683056 1.035g 108452 S 1.7 6.6 462:19.56 Web Content
1785 root =51 (5] (5] (<] 8 S 1.3 ©.8 83:43.24 1irq/58-nvidia
15721 jack 28 8 2915452 516724 181792 S 1.3 3.8 26:23.89 Web Content
2738 jack 20 @ 718868 26412 11328 S 1.8 0.2 2:83.25 plank
17743 jack 29 9 4427280 2.291g 34880 S 9.7 14.7 9:59.46 gimp-2.9

Attacks: Side-Channel - Hardware - Cache

Processes Share a Cache

N

different address
| space, though.

. Trojan | Spy How do they
Process f+—> Process communicate?
sender

| (receiver) .

core core

Private Private
L1/12 L1/12

Shared LLC

Fig. 3. LLC-based covert channel attack scenario.

Attacks: Side-Channel - Hardware- Cache

Cache Timing Attack: Prime+Probe

receiver

L]

sender

ofif2fs]afs] -

IIOII

I I I

Illll

HERNNN

ig. 1. Example of Prime+Probe.

receiver

prime

estimate

nr. of cache
misses w/
atimer. -~

(remember
memory
hierarchy)

4 shameless self-promotion J

goal: tools that developers can use to write secure SW.

sample research (past supervisions):

analyze binaries for information leaks

reduce timing leaks in the Linux kernel
automatically fix vulnerabilities in JavaScript
automatically generate (i.e. synthesize)

a secure program from formal specification

e assess privacy risk in analytics programs
(data scientists; Google search for “Privugger”)

| like code, and | like proofs.
| created the “Applied Information Security” course.

I'm a barista in Analog.

Willard Rafnsson
IT University of Copenhagen

wilr@itu.dk
https:/www.willardthor.com/

computer
security

programming formal
languages methods

IELGRAVENR

* Locality in space / time is crucial for performance
and scalability.

* Analyzing locality requires an understanding of (i)
the memory hierarchy / cache memories, (ii) the
layout of data structures in memory, and (iii) how
loops lead to reuse of data in space and time.

e Performance & Security are fundamentally at odds
(sharing vs isolation)

IT UNIVERSITY OF COPENHAGEN

