
Operating Systems and C
Fall 2022, Performance-Track
6. Locality

01.10.2020 · 1

perflab:
● have two matrix multiplication procedures

(rotate, smooth), have to rewrite it.
● about optimization techniques;

blocking, loop unrolling, etc.
attacklab:
● you have an executable, have to attack it.
● about the stack; code injection (smashing the

stack), return-oriented programming (find
interesting code in other programs).

Parallel Tracks

· 2

exciting part of the course!

security-track lecture nr. 1:
what you’ll need for attacklab.

performance-track lecture nr. 2:
what you’ll need for perflab.
optimizations. how to write code so
compiler can derive performant code.
manual transformations, blocking,
loop unrolling

performance-track lecture nr. 1:
what you’ll need for perflab.
array layout, what it means for
performance, cache hierarchy, how
associativity is organized in the
cache. (important stuff for anyone)

security-track lecture nr. 2:
Linux culture.

• Locality
• Memory Hierarchy
• Cache Utilization
• A note on Security

Outline

01.10.2020 3

Jim Gray, 2006

01.10.2020 4

http://jimgray.azurewebsites.net/jimgraytalks.htm

vanished w/o trace in 2007

motivated & driven a lot of
systems research since.

Jim Gray, 2006

01.10.2020 5

http://jimgray.azurewebsites.net/jimgraytalks.htm

layout of data in memory

Data Systems Group Promotion

01.10.2020 · 6

microarchitectural analysis,
benchmarking, …
how resources are used.
(how much time CPU spends
waiting for memory?)

Locality

Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

Locality Example

Data references

Reference array elements in succession
(stride-1 reference pattern).

Reference variable sum each iteration.
Instruction references

Reference instructions in sequence.

Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

Qualitative Estimates of Locality

Claim: Being able to look at code and get a qualitative sense of
its locality is a key skill for a professional programmer.

Question: Does this function have good locality with respect to
array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

Q: which is faster?

Memory Hierarchies

• Some fundamental and enduring properties of hardware and
software:

• Fast storage technologies cost more per byte, have less capacity, and
require more power (heat!).

• The gap between CPU and main memory speed is widening.

• Well-written programs tend to exhibit good locality.

• These fundamental properties complement each other
beautifully.

• They suggest an approach for organizing memory and storage
systems known as a memory hierarchy.

Jim Gray, 2006

01.10.2020 11

how is data transferred from
● secondary storage to

memory, and
● memory to registers?

http://jimgray.azurewebsites.net/jimgraytalks.htm

I/O Bus

Main
memor

y

I/O
bridgeBus interface

AL
U

Register file

CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus Expansion slots for
other devices such
as network adapters.

A bus is a collection of parallel
wires that carry address, data, and control signals.
Buses are typically shared by multiple devices.

Reading a Disk Sector (1)

Main
memor

y

AL
U

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor
Disk

I/O bus

Bus interface

CPU initiates a disk read by
writing a command, logical block
number, and destination memory
address to a port (address)
associated with disk controller.

Reading a Disk Sector (2)

Main
memor

y

AL
U

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus

Bus interface

Disk controller reads the
sector and performs a direct
memory access (DMA)
transfer into main memory.

note: CPU is not
involved in this.

Reading a Disk Sector (3)

Main
memor

y

AL
U

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor
Disk

I/O bus

Bus interface

When the DMA transfer
completes, the disk controller
notifies the CPU with an
interrupt (i.e., asserts a
special “interrupt” pin on the
CPU)

we’ll learn about
interrupts in future
lecture

Solid-State Drives

01.10.2020 · 16

Read
Write

Lo
gi

ca
l a

dd
re

ss
 s

pa
ce

Scheduling
& Mapping

Wear
Leveling

Garbage
collection

Read
Program

Erase

Chip

Chip

Chip
…

Chip

Chip

Chip
…

Chip

Chip

Chip
…

Chip

Chip

Chip
…

Flash memory array

Channels

Ph
ys

ic
al

 a
dd

re
ss

 s
pa

ce

unchanged for a
long time. let us
replace mechanical
disks w/ SSDs.

but SSDs are very
different (have a
controller).

Open-Channel SSDs: Design Space

· 17

FTL

LightNVM separates
(application-customisable) front-end SSD management

from (media-specific) back-end SSD management.

Mathias Bjørling,
PhD at ITU,
upstreamed Linux
driver. Now used
by Google,
Amazon, Intel,
Alibaba, Microsoft,
…

Idea: separate
front-end and
back-end SSD
management.

switching to…
NVMe
(controlled by Intel)

computational
storage: move
processing to
storage devices!

Programming the Storage Controller

· 18

Jim Gray, NASD Talk, 6/8/98
http://jimgray.azurewebsites.net/jimgraytalks.htm

Niclas works
(worked?) on this!

http://jimgray.azurewebsites.net/jimgraytalks.htm

Data Systems Group Promotion

01.10.2020 · 19

Memory Read Transaction (1)

CPU places address A on the memory bus.

AL
U

Register file

Bus interface
A 0

Ax

Main memory
I/O bridge

%eax

Load operation: movl A, %eax

Memory Read Transaction (2)

Main memory reads A from the memory bus, retrieves word x,
and places it on the bus.

AL
U

Register file

Bus interface

x 0

Ax

%eax

I/O bridge

Load operation: movl A, %eax

Main memory

Memory Read Transaction (3)

CPU read word x from the bus and copies it into register %eax.

x
AL
U

Register file

Bus interface x

Main memory
0

A

%eax

I/O bridge

Load operation: movl A, %eax

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and waits
for the corresponding data word to arrive.

y
AL
U

Register file

Bus interface
A

Main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A

Memory Write Transaction (2)

CPU places data word y on the bus. Main memory
reads data word y from bus and stores it at address A.

y
AL
U

Register file

Bus interface
y

Main memory
0

A

%eax

I/O bridge

Store operation: movl %eax, A

Conventional DRAM Organization

d * w DRAM:
dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

Memory
controller

(to/from CPU)

the way RAM is
organized is as an
array of “supercells”

controller takes care
of translations
between addresses
& physical storage

An Example Memory Hierarchy

Registers

L1 cache
 (SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from L2 cache

CPU registers hold words retrieved
from L1 cache

L2 cache holds cache lines
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

this is actually a
myth; local network
faster than some
local disks.

Caches

• Cache: A smaller, faster storage device that acts as a staging area
for a subset of the data in a larger, slower device.

• Fundamental idea of a memory hierarchy:

• For each k, the faster, smaller device at level k serves as a
cache for the larger, slower device at level k+1.

• Why do memory hierarchies work? Because locality.

• Programs tend to access the data at level k
more often than they access the data at level k+1.

• Thus, the storage at level k+1 can be slower, and thus larger
and cheaper per bit.

• Big Idea: Memory hierarchy creates a large pool of storage that
costs as much as the cheap storage near the bottom, but serves
data to programs at the rate of the fast storage near the top.

car mechanic
analogy

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “lines”

Data is copied in line-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the lines

4

4

4

10

10

10

memory is split into
blocks, aka. lines,
of size 64 bytes.

unit of transfer: 1 line

number represents
requested memory
location

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in line b is neededRequest: 14

14
line b is in cache:
Hit!

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in line b is neededRequest: 12

Line b is not in cache:
Miss!

Line b is fetched from
memory

Request: 12

12

12

12

Line b is stored in cache
•Placement policy:
determines where b goes

•Replacement policy:
determines which block
gets evicted (victim)

General Caching Concepts: Types of Cache Misses

Cold (compulsory) miss

Cold misses occur because the cache is empty.
Conflict miss

Most caches limit lines at level k+1 to a small subset (sometimes a
singleton) of the line positions at level k.

• E.g. Line i at level k+1 must be placed in line (i mod 4) at level k.

Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k line.

• E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
Capacity miss

Occurs when set of active cache lines (working set) is larger than the cache.

thrashing = every
access misses.

placement policy
avoids conflict misses
replacement policy care, to
avoid capacity misses.

Examples of Caching in the Hierarchy

Hardware0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes line

64-bytes line

4-8 bytes words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware1On-Chip L1

Hardware10On/Off-Chip L2

AFS/NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0 CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

ex: access to memory is
100x more expensive
than L1 cache.

Cache Memories

Cache memories are small, fast SRAM-based memories managed
automatically in hardware.

Hold frequently accessed blocks of main memory
CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.
Typical system structure:

Main
memo

ry

I/O
bridgeBus interface

AL
U

Register file
CPU chip

System bus Memory bus

Cache
memorie

s

given some data,
where is it going to be located? 10s

General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Cache size:
C = S x E x B data bytes

valid bit

organization of a cache.
have S sets, and E lines.

Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache line (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

•Locate set
•Check if any line in set
has matching tag

•Yes + line valid: hit
•Locate data starting
at offset

● set-index to find the set,
● tag to find the right line in set

(compare w/ each line; linear search)
● we find our data based on offset within line.

set (0..3)tag (0..1)

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [0000

2
],

1 [0001
2
],

7 [0111
2
],

8 [1000
2
],

0 [0000
2
]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0

Set 1

Set 2

Set 3

we ask for 1 byte.
but we transfer 1 line at a time.
here, a line is 2 bytes.

Why index with the middle bits?

01.10.2020 · 37
01.10.2020

every cell on the
right is 1 byte.
line size 2 bytes.

Q: which indexing
strategy is best?

hint: sequential
access

Why index with the middle bits?

01.10.2020 · 38
01.10.2020

every cell on the
right is 1 byte.
line size 2 bytes.

Q: which indexing
strategy is best?

hint: sequential
access

Why index with the middle bits?

01.10.2020 · 39
01.10.2020

every cell on the
right is 1 byte.
line size 2 bytes.

Q: which indexing
strategy is best?

hint: sequential
access

50% miss 50% miss,
better temporal

underutilized
cache

Array Allocation

01.10.2020 · 40

Basic Principle
T A[L];
A is an Array of data type T and length L

Contiguously allocated region of L * sizeof(T) bytes

compiler is going to reserve
space for the array.

examples follow

Array Allocation

01.10.2020 · 41

8 bytes = 64 bits
(address size =
 word size)

Array Access

01.10.2020 · 42

int A[5] = {0, 1, 2, 3, 4};
Array of data type int and length 5
Identifier A can be used as a pointer to array element 0: Type int*

Reference Type Value

val[4] int 4

val int * x

val+1 int * x + 4

&val[2] int * x + 8

val[5] int ??

*(val+1) int 1

val + i int * x + 4 i

val from
previous slide

undefined
behavior

Array Example

· 43

 # rdx = z
movq $0, %rax # %rax = i

.L4: # loop:
addq $1, (%rdx,%rax,4) # z[i]++
addq $1, %rax # i++
cmpl $5, %rax # i:ZLEN (ZLEN==5)
jne .L4 # if !=, goto loop

ARRAY LOOP EXAMPLE (IA32)

void zincr(zip_dig z) {
 int i;
 for (i = 0; i < ZLEN; i++)
 z[i]++;
}

Array Example

$1 is
constant 1

%r is
register r

addressing mechanism:
z + 4*i

A Higher Level Example

int sum_array_rows(double a[10][10])
{
 int i, j;
 double sum = 0;

 for (i = 0; i < 16; i++)
 for (j = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

int sum_array_cols(double a[10][10])
{
 int i, j;
 double sum = 0;

 for (j = 0; i < 16; i++)
 for (i = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

not in the same line
as previous two

in perflab, use debugger to find
out how my data structure is
layed out.

What about writes?

Multiple copies of data exist:

L1, L2, Main Memory, Disk
What to do on a write-hit?

Write-through (write immediately to memory)

Write-back (defer write to memory until replacement of line)

– Need a dirty bit (line different from memory or not)
What to do on a write-miss?

Write-allocate (load into cache, update line in cache)

– Good if more writes to the location follow

No-write-allocate (writes immediately to memory)
Typical

Write-through + No-write-allocate

Write-back + Write-allocate

faster

Intel Core i7 Cache Hierarchy

Regs

L1
d-cach

e

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cach

e

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Line size: 64 bytes for all
caches.

Intel Core i7 Cache Hierarchy

Cache Performance Metrics

• Miss Rate
• Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate
• Typical numbers (in percentages):
– 3-10% for L1
– can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time
• Time to deliver a line in the cache to the processor
– includes time to determine whether the line is in the cache

• Typical numbers:
– 1-2 clock cycle for L1
– 5-20 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss
– typically 50-200 cycles for main memory (Trend: increasing!)

10s

Latency Numbers Every Programmer Should Know

01.10.2020 · 49

https://colin-scott.github.io/personal_website/research/interactive_latency.html

we’ve seen this.
penalty: from 1 to 100.
huge difference.

Lets think about those numbers

Huge difference between a hit and a miss
Could be 100x, if just L1 and main memory

Would you believe 99% hits is twice as good as 97%?
Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

Average access time:

 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

This is why “miss rate” is used instead of “hit rate”

Arrays and Cache Metrics

C arrays allocated in row-major order
• each row in contiguous memory locations

Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];
• accesses successive elements
• if block size (B) > 4 bytes, exploit spatial locality

compulsory miss rate = 4 bytes / B
Stepping through rows in one column:

• for (i = 0; i < n; i++)
sum += a[i][0];

• accesses distant elements
• no spatial locality!

compulsory miss rate = 1 (i.e. 100%)

skip

Writing Cache Friendly Code

Make the common case go fast
Focus on the inner loops of the core functions

Minimize the misses in the inner loops
Repeated references to variables are good (temporal locality)

Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

Locality Example #1

Question: Can you permute the loops so that the function scans
the 3-d array a with a stride-1 reference pattern (and thus
has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{
 int i, j, k, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 sum += a[i][k][j];
 return sum;
}

10s

Locality Example #2

Assume:
Line size = 32B (big enough for four 64-bit words)

Matrix dimension (N) is very large

•Approximate 1/N as 0.0

Cache is not even big enough to hold multiple rows

Analysis Method:
Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

Matrix Multiplication

01.10.2020 · 55

Matrix Multiplication Example

Description:
Multiply N x N matrices

O(N3) total operations

N reads per source element

N values summed per
destination

• but may be able to hold in
register

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Variable sum
held in register

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C
0.251.0 0.0

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum
 }
}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C
0.251.0 0.0

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C
0.0 0.250.25

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C
0.0 0.250.25

Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

k as inner loop

j as inner loop

i as inner loop

Core i7 Matrix Multiply Performance

jki / kji

ijk / jik

kij / ikj

Sharing is a Vulnerability

attackers exploit sharing.

if A & B share E,
A can observe/affect B through E.

different attacks depending on what is shared

● hardware
● network
● physical world (air-gap)

Attacks: Side-Channel

“somebody toucha
my spaghet!”

fundamental tension:
security (isolation) vs.
performance (sharing)

a note on security

Imitating the Ideal

ideal computer: infinite cores, infinite memory.

fake it

● OS multitasking time-sharing
● memory hierarchy space-sharing

important process requirement: isolation.
processes share resources.

isolation can be violated! (Unintended communication/interference)

Attacks: Side-Channel - Hardware

How It Works

Can I use that resource?

No.

Why not?

Bob’s process is using it.

Why is Bob’s process using it?

Because Bob’s process took the then-branch (not else) in procedure-

Aha! From this, I conclude…!

Attacks: Side-Channel - Hardware

SherlockWorld

CPU Timing Attacks

Attack: Process A monitors the CPU
load of Process B.

● High CPU load ⇒ 1
● Low CPU load ⇒ 0

Attack: Race conditions.

table of processes,
task manager

who writes to
storage first

Attacks: Side-Channel - Hardware - CPU

Processes Share a Cache

Attacks: Side-Channel - Hardware - Cache

different address
space, though.
How do they
communicate?

Cache Timing Attack: Prime+Probe
Attacks: Side-Channel - Hardware- Cache

estimate
nr. of cache
misses w/
a timer.

(remember
 memory
 hierarchy)

goal: tools that developers can use to write secure SW.

sample research (past supervisions):

● analyze binaries for information leaks
● reduce timing leaks in the Linux kernel
● automatically fix vulnerabilities in JavaScript
● automatically generate (i.e. synthesize)

a secure program from formal specification
● assess privacy risk in analytics programs

(data scientists; Google search for “Privugger”)

I like code, and I like proofs.

I created the “Applied Information Security” course.

I’m a barista in Analog.

Willard Rafnsson
IT University of Copenhagen

wilr@itu.dk
https://www.willardthor.com/

formal
methods

programming
languages

computer
security

my
research

shameless self-promotion

• Locality in space / time is crucial for performance
and scalability.

• Analyzing locality requires an understanding of (i)
the memory hierarchy / cache memories, (ii) the
layout of data structures in memory, and (iii) how
loops lead to reuse of data in space and time.

• Performance & Security are fundamentally at odds
(sharing vs isolation)

Take-Aways

01.10.2020 · 72

