<3 | -
A
30 { . -l:' Y T ogetha
31 - Sct' rue Ly
ap,

22 Sc ep SPEY, {

3 . 1nt SDF L T .
3 L} 1 2 S VQ Or=

q Ba, O <
3= AL oat. or3 pode
Sl ey ks,
37 st atic SAlLo ik
38 tatic ac ePaoNDA
39 CePghrVec
SO axtar Ctors SPherr:
a4 xtel‘n zold Draws Dot;(g}GGl
42 void O1d DrawPore(e s
43 G inite *(Scw br::prv““wa .
2; ? . int ~Palloon(voia) e .6'2;:?:;-11;.*;1"'

e @ 1. \
a ’
a7 | baticon.t ()
as | . baxloon'p .
a9 Dot 100n.F perat|ng SVStEmS and
s50 balloon:t F n C
=1 2 balloon.s a“ 2022
5% LJ fsor (1 ©
53 & Tl -
patlls
=T :;g}}'w.s' C Primer
53 3
28 [) 1100”“"’“”'
59 drow... vec i
\/Oi F ct r TESTU“E)

© Ph. Bonnet 2020

16.09.2020 -1

Reading Code

float strtof(const char *nptr, char **endptr);

btest.c
(datalab) .

extern jest rec test_set[];

static int grade = 0;

what does it all mean? static int timeout limit = TIMEOUT LIMIT;
today, goal: reference for reading C.

static char*'testifname = NULL;

static int has_arg[3] = {0,0,0};
static unsigned argval[3] = {0,0,0};

IT UNIVERSITY OF COPENHAGEN

o e B L e) S

The Dark Side

int* (* (*fp1) (int)) [10];

char *const *(*next) ();

to e.g. read something like this.
(there’s a method to the madness)

IT UNIVERSITY OF COPENHAGEN

Pointers

Declarations and definitions
Type specifiers and qualifiers
Type conversions

Symbol overloading
Operator precedence
Unscrambling declarations

NoUnswhH

IT UNIVERSITY OF COPENHAGEN

”A pointer is a variable that contains the address of a
variable.”
K&R

that’s really all. (cf. data representation).
small level of abstraction on top of mov:

Pointers let C programmers directly control CPU
addressing.

IT UNIVERSITY OF COPENHAGEN

p is a char pointer. It is a variable that contains the
address of a char variable.

1 byte (memory is byte-addressable)]

char *p;

char c;
D = &C; (char *) &cC C

address-of l

4[Q: how many bytes (or bits) to represent a pointer?

IT UNIVERSITY OF COPENHAGEN

can also write char* p;
Linux: next to var name

Why pointers?

To manage data placement / locality and memory
allocation (explicit memory management).

To share data without copies

To manage indirections
(more on this later with function pointers)

IT UNIVERSITY OF COPENHAGEN

Virtual Memory

Memow a pointer can point to anything in
Kemel virtual memory T user code virtual memory. (usually stack, heap)
User stack (program = data)
(created at runtime)
!
t

Memory mapped region for
shared libraries

T

(gdb) x /10i main

Run-time heap 0x400596 <main>: %rbp

(created by mallod) 0x400597 <main+1>: %rsp,%rbp
0x40059a <main+4>: $0x60,%rsp

Read/write data 0x40059e <main+8>: %sedi, -0x54 (%rbp)

> 0x4005al <main+1l>: %rsi, -0x60 (%rbp)

Read-only code and data 0x4005a5 <main+15>: %fs:0x28,%rax
Program 0x4005ae <main+24>: %srax, -0x8(%rbp)

start — 0x4005b2 <main+28>: %eax, %eax

0 0x4005b4 <main+30>: $0x50, -0x20 (%rbp)

0x4005b8 <main+34>: $0x68, -0x1f (%rbp)

IT UNIVERSITY OF COPENHAGEN

Exercise

Write type declarations for the following variables:
* (:a pointer to an integer pointer

 t:a pointer to a byte

* U:apointer to a byte array

A Q: spend 2 mins on this]

IT UNIVERSITY OF COPENHAGEN

Exercise

Consider the following code:

de <stdio.h>

int main() {

int *ptr;

*ptr = 20;
printf("%d\n", *ptr);
return 0;

What is wrong?

IT UNIVERSITY OF COPENHAGEN

16.09.2020 - 10

Exercise

Consider the following code:

ide <stdio.h>

int main () { not initialized (indeterminate pointer);
int * pt r- where to store the 207?
’

*ptro= 20;
printf("%d\n", *ptr);
return 0;

What is wrong?

IT UNIVERSITY OF COPENHAGEN

(compiler should complain,
but compiler could do anything)

16.09.2020 - 11

Pointers are valid, null or indeterminate.
A pointer is null when assigned 0O
Null pointers evaluate to false in logical expressions

Dereferencing indeterminate pointers leads to undefined behaviour

Always initialize pointers!

IT UNIVERSITY OF COPENHAGEN

Virtual Memory

phbo@mac610891 ~/D/C/BOSC-E19> cc -Wall 13exl.c -o 13exl

Memory 13ex1.c:5¢3: warning: variable 'ptr' is uninitialized when used here [-Wuninitialized]
el virtual T invisible to *ptr—20;
ernel virtual memory user code Ann
13ex1.c:4:10: initialize the variable 'ptr' to silence this warning
User stack L
(created at runtime) . UL
¢ 1 warning generated.

t

Memory mapped region for
shared libraries

Run-time h compiler decided to
(creatod by mat Lod) initialize to null.
Read/write data ;gdg) (?ngti) Ox0
} (gdb) P &ptr
Read-only code and data $3 = (int **) Ox7fffffffe3a8
Program
start —»

0

IT UNIVERSITY OF COPENHAGEN

Pointer Arithmetic wﬂ byte.]
memory is byte-addressable.

(long *) p0 (char ™) p1 (char *) p1 + 4

l L
I

(long *) pO + 1 (char *) p1 + 1

Along is 8B
Acharis 1B

you can do arith. on addr.
how far you skip, depends on

type of pointer.

IT UNIVERSITY OF COPENHAGEN

Notations can be used interchangeably:

ali] is equivalent to *(a+i)

Regardless of whether a is declared as an array or a
pointer

array represented as a pointer to
the first element of array in memory.

(but array # pointer; see next+1 slide)

IT UNIVERSITY OF COPENHAGEN

Pointer Arithmetic

pO[0] p1[0] p1[4]

l L
]

pO[1] p1[1]

Along is 8B
Acharis 1B

IT UNIVERSITY OF COPENHAGEN

Pointers are NOT arrays #1

(1) Arrays have a size, pointers do not !
int* a;
int b[10];
a=b;

a now points to &b[0], the size is lost

you have extra information in array,
that you do not have in pointer.

IT UNIVERSITY OF COPENHAGEN

IT UNIVERSITY OF COPENHAGEN

Pointers are NOT arrays #2

(2) Arrays are assigned an address
in memory at compile time, while
pointers are assigned an address
In memory at run time.

int* a;

Program

a=b;

[must specify array size, so

compiler can allocate space at
compile time

start —»

0

Kernel virtual memory

User stack
(created at runtime)

!
t

Memory mapped region for
shared libraries

T

Run-time heap
(created by malloc)

Read/write data

Read-only code and data

!

Memory
invisible to
user code

Binky Video

[old instructional video from Stanford L

16.09.2020 - 19

IT UNIVERSITY OF COPENHAGEN

http://www.youtube.com/watch?v=5VnDaHBi8dM

Pointers

Declarations and definitions
Type specifiers and qualifiers
Type conversions

Symbol overloading
Operator precedence
Unscrambling declarations

NoUsEWNRE

IT UNIVERSITY OF COPENHAGEN

Declaration and definition

Definition: specifies
what a function does or where a variable is stored.

Declaration: describes type/name of variable/function.
No space is allocated.

Variables and functions are defined exactly once,

but may be declared several times. [W: think of dec as “intent’,

and def as “enact”

X
dec: just a signature. def: dec + allocate mem for x

| —

def fun: what it does -
def var: how it's stored dec: x exists,

IT UNIVERSITY OF COPENHAGEN

Scope of variables

A variable defined in a function is local to that function.
It is an automatic variable. It does not retain its value
across function calls (lives in stack frame).

A variable defined outside any function is an external
variable. It is a global variable.

Before a global variable can be accessed in other files,
it must be declared with the extern prefix.

A global variable does not need to be declared in the
file where it is defined. [typica,,y, o s

collected in a
IT UNIVERSITY OF COPENHAGEN

header file.

Scope of variables

The scope of a global variable can be restricted to the
file where it is defined with the static prefix.

static and extern are mutually exclusive.

An automatic variable can retain its value across calls
to a function when it is defined with static.

IT UNIVERSITY OF COPENHAGEN

What is an automatic variable? ~{ Aol b oo

How is a global variable defined when it can be
accessed by all C files contributing to an executable?

A: in files where not def, it
must be dec w/ extern

How is a global variable defined when it can only be
accessed from the C file where it is defined?

ﬁA: static

How is a global variable declared outside the file where

It is @Ined? <[A: extern

IT UNIVERSITY OF COPENHAGEN

function definition; we are
Exa m p I € specifying what function does]

local to function, but
retains values across calls.

scope.C
finclude<stdio.h>
int fun()

{

static int count
count++;
return count;

} % ./scope
12

% make scope
scope.C -0 scope

int main()

{
printf("%sd ", fun());
printf("%sd ", fun());
Beturn 0;

16.09.2020 - 25

IT UNIVERSITY OF COPENHAGEN

scope2.c
xtern int var;
int main(void)

{

var = 10;
return 0;

% make scope2
EG scope2.c -0 scope2
Undefined symbols for architecture x86 64:

" var", referenced from:

_main in scope2-4b8294.0

ld: symbol(s) not found for architecture x86 64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
make: *** [scope2] Error 1

solution:
define it in a header file. (next)

IT UNIVERSITY OF COPENHAGEN

int var implicitly defined (to 0)]

scope2.c
"scope2.h"

extern int var; > —
int main(void) SCopes.C gydelcyy
{ fnt var;

var = 10;
return 0;

% make scope

cC scope2.cC -0 scope2

16.09.2020 - 27

IT UNIVERSITY OF COPENHAGEN

You can’t have:
A function that returns a function

* A function that returns an array

* An array of function

(type system doesn’t allow it, despite conceptually
making sense)

IT UNIVERSITY OF COPENHAGEN

But you can have

A function returning a pointer to a function

A function returning a pointer to an array

An array of function pointers

(due to restrictions in C type system, we use pointers
as an indirection-level)

IT UNIVERSITY OF COPENHAGEN

O Utl Ine /" data science students:)
if you use Cython

https://cython.org/
(optimizing compiler
for Python), then
you must understand

Pointers yﬁem-)
Declarations and definitions

. Type specifiers and qualifiers
Type conversions

Symbol overloading

Operator precedence
Unscrambling declarations

1.
2.
3

4.
5.
6.
/.

IT UNIVERSITY OF COPENHAGEN

https://cython.org/

I ifies how T —
Type SpECIerrS %ergi;yopées an]

* char, int, short, long, float, double
e signed / unsigned

 Pointer: *
e Array:|[]

IT UNIVERSITY OF COPENHAGEN

Reading Code

float strtof(const char *nptr, char **endptr);

10

btest.c

E 500000

S 13

defined in another file
(which: comment is helpful)

local to this file and co
static int grade = 0;

static int timeout_limit = TIMEOUT_ LIMIT;

extern test rec test_set[];

static char*'testifname = NULL;

static int has_arg[3] = {0,0,0};
static unsigned argval[3] = {0,0,0};

IT UNIVERSITY OF COPENHAGEN

o e B L e) S

Type specifiers

Struct
Union

Enum

IT UNIVERSITY OF COPENHAGEN

Type specifiers: struct {am]

Struct: a bunch of data items grouped together
(in memory)

struct tag {
type 1 identifier_1;
type 2 identifier 2;

type N identifier N;
}s

struct tag variable _name;

IT UNIVERSITY OF COPENHAGEN

Type specifier: struct

The data items in struct are accessed through dot operator.
When using a pointer to struct, the data items dereferenced
through the pointer are accessed through arrow operator.

/* struct that points to the next struct */

struct node_tag {
int datum;

struct node_tag *next;

}i

struct node_tag a,b;
a.next = &b;
a.next->next=NULL;

S J
Y

shorthand for
(*(a.next)).next

def

i

ec

def

foo->bar
shorthand for
(*foo) .bar

def

Type specifiers: struct

bits inside a

giving names to
struct.

Structs can have bit fields, unnamed fields, and

word-aligned fields.

/* process ID info */
struct pid_tag {

f;fﬁ "unsigned short int inactive
gg>< unsigned short int :1;

%g unsigned short int refcount
5o (unsigned short int :8;

§§ short pid_id;

= € struct pid_tag *1link;

s

IT UNIVERSITY OF COPENHAGEN

16

:1;

/* 1 bit of padding */

/* pad to short length */

Type specifier: struct

#include <stdio.h>
#include <string.h>

struct {
unsigned int age : 3;
} Age;

int main() {
Age.age = 4;

printf("Sizeof(Age) : %d\n", sizeof(Age));
printf("Age.age : %d\n", Age.age);

Age.age = 7;
printf("Age.age : %d\n", Age.age);
Age.age = 8;
printf("Age.age : %d\n", Age.age); phbo@parallels-vm ~/C/C/Lectures> ./13ex2
| Sizeof(Age): 4
return 0; | Age.age: 4
} | Age.age: 7

| Age.age: 0

IT UNIVERSITY OF COPENHAGEN Q: if | assign 10, and print, what gets printed?]

Type specifier: struct, the beauty of

struct s tag { int a[100]; }:

struct s _tag orange, lime, lemon;

struct s tag twofold (struet :s tag s)
ing 5
for: (j=0:3<1003++) s.aljl
return s;

*= 2

}

main () {
Int 1.2
for (i=0;i<100;i++) lime.a[i] =
lemon = twofold(lime) ;
orange = lemon;

IT UNIVERSITY OF COPENHAGEN

1;

Definition
Space is reserved

A array as input)

{ :
function cannot return an array,)

but
function can return a struct.

(cf. returning a pointer)

)

/* assigns entire struct */

this will copy the entire
structure!

(if that’s not what you want,
then use pointers)

Type specifier: union

Unions have a similar appearance to structs, but the
memory layout has one crucial difference. Instead of
each member being stored after the end of the previous
one, all the members have an offset of zero. The storage
for the individual members is thus overlaid: only one
member at a time can be stored there.

union bits32_tag {
int whole; /* a 4B value */
struct {char c0,c1,c2,c3;} byte; /* 4 * 1B values */

me: TCP frames]

IT UNIVERSITY OF COPENHAGEN

Type specifier: enum

Enums (enumerated types) are simply a way of
associating a series of names with a series of integer

values.

enum sizes { small=7, medium, large=10, humongous };

| 8 (7+1) | |11 |

IT UNIVERSITY OF COPENHAGEN

Type qualifier #1: const

const qualifies a read-only variable; one that cannot be
a left value in an assignment following the variable
declaration.

" % make const
nt main() cc const.c -0 const

{ const.c:4:4: error: cannot assign to variable 'i' with const-qualified type 'const int’
. . 1 =2
const int 1; N

i = 12° const.c:3:12: note: variable 'i' declared const here
o <, .

S 1 error generated.
return O' make: *** [const] Error 1

IT UNIVERSITY OF COPENHAGEN

Type qualifier #1: const

The combination of const and * is usually only used to
simulate call-by-value for array parameters. It says,

"I am giving you a pointer to this thing, but you may
not change it."

Expert C programming

int * const p;
// p cannot be left value in an assignment

IT UNIVERSITY OF COPENHAGEN

const int limit;
limit = 10;

Type qualifier #1: const 4[“0“‘* canniot nave)]

const int limit = 10; 1int limit = 160;

const int * limitp = 1int * const limitp =
&limit; &limit;

int 1=27; int i1=27,;

limitp = &i; limitp = &i;

pointer to constants. can point to constant pointer. cannot point to other
other constants (i.e. something that things. (W: but can overwrite pointee; 020 43
cannot be on lhs of assignment. can e.g. update limit) '

Type qualifier #2: volatile

volatile qualifies a variable that might be modified
outside the program.

For example, a register that can be modified by a
device can be tested/read repeatedly by a program
that never modifies it directly.

Assigning a volatile object to a pointer results in
undefined behaviour.

IT UNIVERSITY OF COPENHAGEN

Type qualifier #2: volatile can be initialized]
outside your program.

struct devregs{
unsigned short volatile csr;
unsigned short const volatile data;

s

IT UNIVERSITY OF COPENHAGEN

Void is the type of a function that does not return a
result.

IT UNIVERSITY OF COPENHAGEN

void *

void * defines a pointer to data of unspecified type.

IT UNIVERSITY OF COPENHAGEN

Declarations and definitions
Type specifiers and qualifiers
Type conversions

Symbol overloading
Operator precedence
Unscrambling declarations

O UnsEWwWNE

IT UNIVERSITY OF COPENHAGEN

Type conversions

Explicit:
A value of one type is explicitly cast to another type

Implicit:
1. Avalue of one type is assigned to a variable of a
different type
2. An operator converts the type of its operands

3. Avalueis passed as argument to a function or when a
value is returned from a function

IT UNIVERSITY OF COPENHAGEN

Unsigned and signed

Same bit level representation, different interpretations

If there is a mix of unsigned and signed in single
expression, signed values are implicitly cast to

unsigned
be very careful
(recall kernel mem copy)

IT UNIVERSITY OF COPENHAGEN

Pointer conversions

* A pointer to one type of value can be converted to a pointer to a different
type. However, the result may be undefined because of the alignment
requirements and sizes of different types in storage.

* A pointer to an object can be converted to a pointer to an object whose
type requires less or equally strict storage alignment, and back again
without change.

* A pointer to void can be converted to or from a pointer to any type,
without restriction or loss of information. If the result is converted back to
the original type, the original pointer is recovered.

e |f a pointer is converted to another pointer with the same type but having
different or additional qualifiers, the new pointer is the same as the old
except for restrictions imposed by the new qualifier.

IT UNIVERSITY OF COPENHAGEN

Pointer conversions

A pointer value can also be converted to an integral value. The conversion path depends on the

size of the pointer and the size of the integral type:

* If the size of the pointer is greater than or equal to the size of the integral type, the pointer
behaves like an unsigned value. It cannot be converted to a floating value.

* If the pointer is smaller than the integral type, the pointer is first converted to a pointer with
the same size as the integral type, then converted to the integral type.

IT UNIVERSITY OF COPENHAGEN

Pointer conversions | skip \

Name

malloc, free, calloc, realloc - allocate and free dynamic memory

Synopsis

#include <stdlib.h>

void *malloc(size_t size);
void free(void #*ptr);

void *calloc(size_t nmemb, size_t size);
void *realloc(void #*ptr, size_t size);

/* j is a pointer to an array of 20 char */
char (*j)[20];
j = (char (*)[20]) malloc(20);

IT UNIVERSITY OF COPENHAGEN 16.09.2020 - 53

Type compatibility: Subtleties (skip |

char > ¢p; 1 foofconst char **p) { }

const. char *ccp; 2

ccp = Cp; 3 mainl{int argec, cHaf **argv)
4{
5 foo(argv):;
6}

O @

OK if both operands are pointers to qualified or unqualified
versions of compatible types, and type pointed to by the left
has all the qualifiers of the type pointed to by the right.

IT UNIVERSITY OF COPENHAGEN

Declarations and definitions
Type specifiers and qualifiers
Type conversions
Symbol/keyword overloading
Operator precedence
Unscrambling declarations

Ok wWNE

IT UNIVERSITY OF COPENHAGEN

KeyWO rd Overloadi Ng From expert C programming

Symbol Meaning

static |Inside a function, retains its value between calls

At the function level, visible only in this file ™
lextern vApplied to a function definition, has global scope (and is redundant)

/Applied to a variable, defined elsewhere
void As the return type of a function, doesn't return a value

In a pointer declaration, the type of a generic pointer

In a parameter list, fakes no parameters

TAL_BE

can be used for different things.

(just need to be aware of the
IT UNIVERSITY OF COPENHAGEN overloading)

Symbol Overloading

IT UNIVERSITY OF COPENHAGEN

The multiplication operator

|Applied to a pointer, indirection

In a declaration, a pointer

& Bitwise AND operator
|Address-of operator
] Assignment operator
== Comparison operator
<= Less-than-or-equal-to operator
<<= Compound shift-left assignment operator
< \Less-than operator
Left delimiter in #include directive

Enclose formal parameters in a function definition

Make a function call
Provide expression precedence
Convert (cast) a value to a different type

Define a macro with arguments

Make a macro call with arguments

Enclose the operand of the sizeof operator when it is a typename

From expert C programming

' 16.09.2020 - 57

Declarations and definitions
Type specifiers and qualifiers
Type conversions
Symbol/keyword overloading
Operator precedence
Unscrambling declarations

A S

IT UNIVERSITY OF COPENHAGEN

O p e ra to r P re Ce d e n C e From http://en.cppreference.com/w/c/language/operator_precedence

Precedence Operator Description Associativity
++ - - Suffix/postfix increment and decrement Left-to-right
ad mess. () Function call
. [] Array subscripting
Structure and union member access
-> Structure and union member access through pointer
(type){list} Compound literal(c99)
++ - - Prefix increment and decrement Right-to-left
+ - Unary plus and minus
I~ Logical NOT and bitwise NOT
2 (type) Type cast
* Indirection (dereference)
& Address-of
sizeof Size-of
_Alignof Alignment requirement(c11)
3 */% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
5 << >> Bitwise left shift and right shift
6 <<= For relational operators < and = respectively
> = For relational operators > and = respectively
7 == l= For relational = and # respectively
8 & Bitwise AND
9 2 Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
11 & Logical AND
12 | Logical OR
13[note 1] | 2; Ternary conditionallnote 2] Right-to-Left
= Simple assignment
+= -= Assignment by sum and difference
14 *= /= %= Assignment by product, quotient, and remainder
<<= >>= Assignment by bitwise left shift and right shift
& "= |= Assignment by bitwise AND, XOR, and OR

15 . Comma Left-to-right
IT UNIVERSITY OF COPENHAGEN g

Operator Precedence

“Some operators have the wrong precedence”
Kernighan and Ritchie.

IT UNIVERSITY OF COPENHAGEN

Operator Precedence

From expert C programming

[skip

Precedence Expression What People What They
problem Expect Actually Get
. is higher than * *p.f the f field of what p take the f offset from p,

the p->f op was

made to smooth over

this

points to
(*p) . £

use it as a pointer
*{p.£)

[1 is higher than *

int *ap/(]

ap is a ptr to array
of

ints

int{*ap) [}

ap is an array of ptrs-to-
int
int *({apl])

function ()
higher than *

int *fp{)

fpisaptrto
function
returning int
int {=£fp) ()

fp is a function
returning ptr-fo-int

)

int *{fp())

== and != higher (valamask (val&mask) !=0 val & (mask !=0]
precedence than 1= 0)

bitwise operators

~« and !« higher c«getchar { (c«getchar()) c«(getchar() !«EOQOF)
precedence than) :=EOF != EBOF

assignment

arithmetic higher msbecd + (msbe<d) +1sb msbhe<< (4+1sb)
precedence than 1sb

shift

. has lowest i=1,2; i= (1,2); (i=1), 2;

precedence of all
operators

IT UNIVERSITY OF COPENHAGEN

16.09.2020-

61

Operator Precedence

Always put parentheses around an expression that
mixes booleans, arithmetic, or bit manipulation with
anything else.

[mlmjse parentheses!]
IT UNIVERSITY OF COPENHAGEN has higher precedence over rest.

Declarations and definitions
Type specifiers and qualifiers
Type conversions
Symbol/keyword overloading
Operator precedence
Unscrambling declarations

O s wNheE

IT UNIVERSITY OF COPENHAGEN

The rules for understanding C declarations

1. Declarations are read by starting with the name (of the variable,

function or type)
2. The following precedence rules apply:

A. Parentheses grouping together part of the declaration
B. The postfix operators

* Parenthesis indicating a function

 Square brackets indicating an array

C. The prefix operator

« *denoting a pointer to
3. If aconstor volatile is next to a type specifier it qualifies it, otherwise
const or volatile applies to the * on its immediate left

IT UNIVERSITY OF COPENHAGEN

The Dark Side

char* const *(*next)();

IT UNIVERSITY OF COPENHAGEN Q: so, what is this? (brief pause; next)

Understanding C declarations

Next is (1)
a pointer to (2A)
a function returning (2B)
a pointer to (2C)
a constant pointer to (3)
char

IT UNIVERSITY OF COPENHAGEN

The Dark Side

int * (* (*fp1) (int)) [10];

IT UNIVERSITY OF COPENHAGEN Q: so, what is this? (brief pause; next)

The Dark Side

% cdecl
Type " help' or "?' for help
cdecl> explain int * (* (*fpl) (int)) [10]

declare fpl as pointer to function (int) returning pointer to array 10 of pointer to int
cdecl>

IT UNIVERSITY OF COPENHAGEN

char *(*c[10])(int **p)

IS A ACO RN INca] | Q: so, what s this? (brief pause; next)

c is a array 10 of pointer to function (pointer to
pointer to int) that returns pointer to char

IT UNIVERSITY OF COPENHAGEN

Reading Code

float strtof(const char *nptr, char **endptr);

now you can read code.

10

btest.c

500000

S 13

extern test rec test_set[];

static int grade = 0;
static int timeout_limit = TIMEOUT_ LIMIT;
static char* test_fname = NULL;

static int has_arg[3] = {0,0,0};
static unsigned argval[3] = {0,0,0};

IT UNIVERSITY OF COPENHAGEN

cetatic int alobal ratina = 0

Expert C Programming

the bible.

itt),essiel’aelpéoci‘l% programming Ex P E RT c
PROGRAMMING

DEEP C SECRETS

PETER VAN DER LINDEN

16.09.2020 - 72

IT UNIVERSITY OF COPENHAGEN

IELGRAVENR

You should remember:

A pointer is a variable that contains the address of a variable
The difference between declaration and definition

The scope of variables (automatic / global)

The difference between type qualifier and specifier

The meaning of const and volatile
qualifier: const, volatile, ...
The nature of structs <{ packed together } [specifier: char, int, *, ...

When type conversions takes place

What happens when signed and unsigned are mixed
Beware operator precedence

Use cdecl when in doubt about a declaration

IT UNIVERSITY OF COPENHAGEN

O 00N WM R

—
©

