
Operating Systems and C
Fall 2022
5. C Primer

16.09.2020 · 1© Ph. Bonnet 2020

Reading Code

16.09.2020 · 2

btest.c
(datalab)

what does it all mean?
today, goal: reference for reading C.

int * (* (*fp1) (int)) [10];

char *const *(*next) ();

The Dark Side

16.09.2020 3

to e.g. read something like this.
(there’s a method to the madness)

1. Pointers
2. Declarations and definitions
3. Type specifiers and qualifiers
4. Type conversions
5. Symbol overloading
6. Operator precedence
7. Unscrambling declarations

Outline

16.09.2020 4

”A pointer is a variable that contains the address of a
variable.”

K & R

Pointers let C programmers directly control CPU
addressing.

C pointers

16.09.2020 · 5

that’s really all. (cf. data representation).
small level of abstraction on top of mov:

p is a char pointer. It is a variable that contains the
address of a char variable.

char *p;

char c;

p = &c;

Notation

16.09.2020 · 6

c(char *) &c

1 byte (memory is byte-addressable)

address-of

Q: how many bytes (or bits) to represent a pointer?
can also write char* p;
Linux: next to var name

To manage data placement / locality and memory
allocation (explicit memory management).

To share data without copies

To manage indirections
(more on this later with function pointers)

Why pointers?

16.09.2020 · 7

Virtual Memory

16.09.2020 · 8

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data

Read-only code and data
Program

start

a pointer can point to anything in
virtual memory. (usually stack, heap)
(program = data)

Write type declarations for the following variables:
• q: a pointer to an integer pointer
• t: a pointer to a byte
• u: a pointer to a byte array

Exercise

16.09.2020 · 9

Q: spend 2 mins on this

Consider the following code:

What is wrong?

Exercise

16.09.2020 · 10

Consider the following code:

What is wrong?

Exercise

16.09.2020 · 11

not initialized (indeterminate pointer);
where to store the 20?

(compiler should complain,
 but compiler could do anything)

Pointers are valid, null or indeterminate.

A pointer is null when assigned 0

Null pointers evaluate to false in logical expressions

Dereferencing indeterminate pointers leads to undefined behaviour

Pointers

16.09.2020 · 12

Always initialize pointers!

Virtual Memory

16.09.2020 · 13

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data

Read-only code and data
Program

start

compiler decided to
initialize to null.

Pointer Arithmetic

16.09.2020 · 14

(char *) p1(long *) p0

(long *) p0 + 1 (char *) p1 + 1
A long is 8B
A char is 1B

recall: 1 cell is 1 byte.
memory is byte-addressable.

you can do arith. on addr.
how far you skip, depends on
type of pointer.

(char *) p1 + 4

Notations can be used interchangeably:

a[i] is equivalent to *(a+i)

Regardless of whether a is declared as an array or a
pointer

Array and pointers
NOTATIONS

16.09.2020 · 15

array represented as a pointer to
the first element of array in memory.
(but array ≠ pointer; see next+1 slide)

Pointer Arithmetic

16.09.2020 · 16

p1[0]p0[0]

p0[1] p1[1]
A long is 8B
A char is 1B

p1[4]

(1) Arrays have a size, pointers do not !
int* a;

int b[10];

a = b;

a now points to &b[0], the size is lost

Pointers are NOT arrays #1

16.09.2020 · 17

you have extra information in array,
that you do not have in pointer.

(2) Arrays are assigned an address
in memory at compile time, while
pointers are assigned an address
in memory at run time.

int* a;

int b[10];

a = b;

Pointers are NOT arrays #2

16.09.2020 · 18

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data

Read-only code and data
Program

startmust specify array size, so
compiler can allocate space at
compile time

Binky Video

16.09.2020 · 19

old instructional video from Stanford

http://www.youtube.com/watch?v=5VnDaHBi8dM

1. Pointers
2. Declarations and definitions
3. Type specifiers and qualifiers
4. Type conversions
5. Symbol overloading
6. Operator precedence
7. Unscrambling declarations

Outline

16.09.2020 20

Definition: specifies
what a function does or where a variable is stored.

Declaration: describes type/name of variable/function.
No space is allocated.

Variables and functions are defined exactly once,
but may be declared several times.

Declaration and definition

16.09.2020 · 21

W: think of dec as “intent”,
 and def as “enact”

dec: x exists,
def: dec + allocate mem for x

def fun: what it does
def var: how it’s stored
dec: just a signature.

A variable defined in a function is local to that function.
It is an automatic variable. It does not retain its value
across function calls (lives in stack frame).

A variable defined outside any function is an external
variable. It is a global variable.

Before a global variable can be accessed in other files,
it must be declared with the extern prefix.

A global variable does not need to be declared in the
file where it is defined.

Scope of variables

16.09.2020 · 22

typically, these are
collected in a
header file.

The scope of a global variable can be restricted to the
file where it is defined with the static prefix.

static and extern are mutually exclusive.

An automatic variable can retain its value across calls
to a function when it is defined with static.

Scope of variables

16.09.2020 · 23

What is an automatic variable?

How is a global variable defined when it can be
accessed by all C files contributing to an executable?

How is a global variable defined when it can only be
accessed from the C file where it is defined?

How is a global variable declared outside the file where
it is defined?

Recap so far

16.09.2020 · 24

A: local to function

A: in files where not def, it
 must be dec w/ extern

A: static

A: extern

Example

16.09.2020 · 25

function definition; we are
specifying what function does

local to function, but
retains values across calls.

Example

16.09.2020 · 26

solution:
define it in a header file. (next)

Example

16.09.2020 · 27

int var implicitly defined (to 0)

You can’t have:
• A function that returns a function

Never foo()()
• A function that returns an array

Never foo()[]
• An array of function

Never foo[]()

(type system doesn’t allow it, despite conceptually
 making sense)

Restrictions

16.09.2020 · 28

A function returning a pointer to a function
*fun() ()

A function returning a pointer to an array
*fun()[]

An array of function pointers
*foo[]()

(due to restrictions in C type system, we use pointers
 as an indirection-level)

But you can have

16.09.2020 · 29

1. Pointers
2. Declarations and definitions
3. Type specifiers and qualifiers
4. Type conversions
5. Symbol overloading
6. Operator precedence
7. Unscrambling declarations

Outline

16.09.2020 30

data science students:
if you use Cython
https://cython.org/
(optimizing compiler
 for Python), then
you must understand
C type system.

https://cython.org/

• char, int, short, long, float, double
• signed / unsigned

• Pointer: *
• Array: []

Type Specifiers

16.09.2020 · 31

specifies how many bytes, and
how interpreted by ops.

Reading Code

16.09.2020 · 32

btest.c

defined in another file
(which: comment is helpful)

local to this file

Struct

Union

Enum

Type specifiers

16.09.2020 · 33

Struct: a bunch of data items grouped together
(in memory)

struct tag {
type_1 identifier_1;
type_2 identifier_2;
...
type_N identifier_N;

} ;
struct tag variable_name;

Type specifiers: struct

16.09.2020 · 34

a record

The data items in struct are accessed through dot operator.
When using a pointer to struct, the data items dereferenced
through the pointer are accessed through arrow operator.

/* struct that points to the next struct */
struct node_tag {

int datum;
struct node_tag *next;

};
struct node_tag a,b;
a.next = &b;
a.next->next=NULL;

Type specifier: struct

16.09.2020 · 35

foo->bar
shorthand for
(*foo).bardef

dec

def

shorthand for
(*(a.next)).next

defdef

Structs can have bit fields, unnamed fields, and
word-aligned fields.

/* process ID info */
struct pid_tag {

unsigned short int inactive :1;
unsigned short int :1; /* 1 bit of padding */
unsigned short int refcount :6;
unsigned short int :8; /* pad to short length */
short pid_id;
struct pid_tag *link;

};

Type specifiers: struct

16.09.2020 · 36

giving names to
bits inside a
struct.

1
un

si
gn

ed
 s

ho
rt;

na
m

in
g

its
 b

its

Type specifier: struct

16.09.2020 · 37Q: if I assign 10, and print, what gets printed?

Type specifier: struct, the beauty of

16.09.2020 · 38

Definition
Space is reserved

function cannot return an array,
but
function can return a struct.
(cf. returning a pointer)

array as input

this will copy the entire
structure!
(if that’s not what you want,
 then use pointers)

Unions have a similar appearance to structs, but the
memory layout has one crucial difference. Instead of
each member being stored after the end of the previous
one, all the members have an offset of zero. The storage
for the individual members is thus overlaid: only one
member at a time can be stored there.

union bits32_tag {
int whole; /* a 4B value */
struct {char c0,c1,c2,c3;} byte; /* 4 * 1B values */

}

Type specifier: union

16.09.2020 · 39

example use: TCP frames

Enums (enumerated types) are simply a way of
associating a series of names with a series of integer
values.

enum sizes { small=7, medium, large=10, humongous };

Type specifier: enum

16.09.2020 · 40

8 (7+1) 11

const qualifies a read-only variable; one that cannot be
a left value in an assignment following the variable
declaration.

Type qualifier #1: const

16.09.2020 · 41

The combination of const and * is usually only used to
simulate call-by-value for array parameters. It says,
"I am giving you a pointer to this thing, but you may
not change it."
Expert C programming

int * const p;
// p cannot be left value in an assignment

Type qualifier #1: const

16.09.2020 · 42

const int limit = 10;
const int * limitp =
&limit;
int i=27;
limitp = &i;

Type qualifier #1: const

16.09.2020 · 43

int limit = 10;
int * const limitp =
&limit;
int i=27;
limitp = &i;

(note: cannot have)
const int limit;
limit = 10;

pointer to constants. can point to
other constants (i.e. something that
cannot be on lhs of assignment.

constant pointer. cannot point to other
things. (W: but can overwrite pointee;
can e.g. update limit)

volatile qualifies a variable that might be modified
outside the program.

For example, a register that can be modified by a
device can be tested/read repeatedly by a program
that never modifies it directly.

Assigning a volatile object to a pointer results in
undefined behaviour.

Type qualifier #2: volatile

16.09.2020 · 44

struct devregs{
unsigned short volatile csr;
unsigned short const volatile data;

};

Type qualifier #2: volatile

16.09.2020 · 45

can be initialized
outside your program.

Void is the type of a function that does not return a
result.

void

16.09.2020 · 46

void * defines a pointer to data of unspecified type.

void *

16.09.2020 · 47

1. Declarations and definitions
2. Type specifiers and qualifiers
3. Type conversions
4. Symbol overloading
5. Operator precedence
6. Unscrambling declarations

Outline

16.09.2020 48

Explicit:
A value of one type is explicitly cast to another type

Implicit:
1. A value of one type is assigned to a variable of a

different type

2. An operator converts the type of its operands

3. A value is passed as argument to a function or when a
value is returned from a function

Type conversions

16.09.2020 · 49

Same bit level representation, different interpretations

If there is a mix of unsigned and signed in single
expression, signed values are implicitly cast to
unsigned

Unsigned and signed

16.09.2020 · 50

be very careful
(recall kernel mem copy)

• A pointer to one type of value can be converted to a pointer to a different
type. However, the result may be undefined because of the alignment
requirements and sizes of different types in storage.

• A pointer to an object can be converted to a pointer to an object whose
type requires less or equally strict storage alignment, and back again
without change.

• A pointer to void can be converted to or from a pointer to any type,
without restriction or loss of information. If the result is converted back to
the original type, the original pointer is recovered.

• If a pointer is converted to another pointer with the same type but having
different or additional qualifiers, the new pointer is the same as the old
except for restrictions imposed by the new qualifier.

Pointer conversions

16.09.2020 · 51

A pointer value can also be converted to an integral value. The conversion path depends on the
size of the pointer and the size of the integral type:
• If the size of the pointer is greater than or equal to the size of the integral type, the pointer

behaves like an unsigned value. It cannot be converted to a floating value.
• If the pointer is smaller than the integral type, the pointer is first converted to a pointer with

the same size as the integral type, then converted to the integral type.

Conversely, an integral type can be converted to a pointer type according to the following rules:
• If the integral type is the same size as the pointer type, the conversion simply causes the

integral value to be treated as a pointer (an unsigned integer).
• If the size of the integral type is different from the size of the pointer type, the integral type

is first extended or truncated to fit the size of the pointer. It is then treated as a pointer
value.

Pointer conversions

16.09.2020 · 52

/* j is a pointer to an array of 20 char */
char (*j)[20];
j = (char (*)[20]) malloc(20);

Pointer conversions

16.09.2020 · 53

skip

Type compatibility: Subtleties

16.09.2020 · 54

OK if both operands are pointers to qualified or unqualified
versions of compatible types, and type pointed to by the left
has all the qualifiers of the type pointed to by the right.

skip

1. Declarations and definitions
2. Type specifiers and qualifiers
3. Type conversions
4. Symbol/keyword overloading
5. Operator precedence
6. Unscrambling declarations

Outline

16.09.2020 55

Keyword Overloading

16.09.2020 · 56

From expert C programming

can be used for different things.
(just need to be aware of the
overloading)

Symbol Overloading

16.09.2020 · 57

From expert C programming

lol

lol

lol

lol

1. Declarations and definitions
2. Type specifiers and qualifiers
3. Type conversions
4. Symbol/keyword overloading
5. Operator precedence
6. Unscrambling declarations

Outline

16.09.2020 58

Operator Precedence

16.09.2020 · 59

From http://en.cppreference.com/w/c/language/operator_precedence

a mess.

“Some operators have the wrong precedence”
Kernighan and Ritchie.

Operator Precedence

16.09.2020 · 60

lol

Operator Precedence

16.09.2020· 61

From expert C programming

skip

Always put parentheses around an expression that
mixes booleans, arithmetic, or bit manipulation with

anything else.

Operator Precedence

16.09.2020 · 62

when in doubt: use parentheses!
has higher precedence over rest.

1. Declarations and definitions
2. Type specifiers and qualifiers
3. Type conversions
4. Symbol/keyword overloading
5. Operator precedence
6. Unscrambling declarations

Outline

16.09.2020 63

1. Declarations are read by starting with the name (of the variable,
function or type)

2. The following precedence rules apply:

A. Parentheses grouping together part of the declaration

B. The postfix operators

• Parenthesis indicating a function

• Square brackets indicating an array

C. The prefix operator

• * denoting a pointer to
3. If a const or volatile is next to a type specifier it qualifies it, otherwise

const or volatile applies to the * on its immediate left

The rules for understanding C declarations

16.09.2020 · 64

char* const *(*next)();

The Dark Side

16.09.2020 · 65Q: so, what is this? (brief pause; next)

Next is (1)
a pointer to (2A)
a function returning (2B)
a pointer to (2C)
a constant pointer to (3)
char

Understanding C declarations

16.09.2020 · 66

int * (* (*fp1) (int)) [10];

The Dark Side

16.09.2020 67Q: so, what is this? (brief pause; next)

The Dark Side

16.09.2020 · 68

char *(*c[10])(int **p)

How about?

16.09.2020 · 69Q: so, what is this? (brief pause; next)

c is a array 10 of pointer to function (pointer to
pointer to int) that returns pointer to char

Solution

16.09.2020 · 70

Reading Code

16.09.2020 · 71

btest.c

now you can read code.

Expert C Programming

16.09.2020 · 72

the bible.
it’s really old.
best ref for C programming

You should remember:
1. A pointer is a variable that contains the address of a variable
2. The difference between declaration and definition
3. The scope of variables (automatic / global)
4. The difference between type qualifier and specifier
5. The meaning of const and volatile
6. The nature of structs
7. When type conversions takes place
8. What happens when signed and unsigned are mixed
9. Beware operator precedence

10. Use cdecl when in doubt about a declaration

Take-Aways

16.09.2020 · 73

qualifier: const, volatile, …
specifier: char, int, *, …packed together

