
Operating Systems and C
Fall 2022
4. Interpreter

1. Instruction Set Architecture (ISA)
2. Logic Design
3. Moore’s Law and Dennard Scaling

Outline

Assembly Language View
Processor state

Registers, memory, …
Instructions

addq, pushq, ret, …
How instructions are encoded as bytes

Layer of Abstraction
Above: how to program machine

Processor executes instructions in a sequence

Below: what needs to be built

Use variety of tricks to make it run fast

E.g., execute multiple instructions simultaneously

Instruction Set Architecture

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

ARM ISA

Intel x86-64 & Extensions
https://en.wikichip.org/wiki/x86

Little endian
variable length
instruction set

Relevance for Data Science

Complex Instruction Set Computer
e.g., IA32

Stack-oriented instruction set
Use stack to pass arguments, save program counter

Explicit push and pop instructions

Arithmetic instructions can access memory
 addq %rax, 12(%rbx,%rcx,8)

requires memory read and write

Complex address calculation

Condition codes
Set as side effect of arithmetic and logical instructions

Philosophy
Add instructions to perform “typical” programming tasks

CISC Instruction Sets

Reduced Instruction Set Computer
Internal project at IBM, later popularized by Hennessy and Patterson

ARM, RISC-V

Fewer, simpler instructions
Might take more to get given task done

Can execute them with small and fast hardware

Register-oriented instruction set
Many more registers

Use for arguments, return pointer, temporaries

Only load and store instructions can access memory
Similar to X86-64 mov

No Condition codes
Test instructions return 0/1 in register

RISC Instruction Sets

RISC V

https://www.youtube.com/watch?v=Rl2NFy9Xe-0

Original Debate
Strong opinions!

CISC proponents---easy for compiler, fewer code bytes

RISC proponents---better for optimizing compilers, can make run fast with simple chip
design

Current Status
For desktop processors, choice of ISA not a technical issue

With enough hardware, can make anything run fast

Code compatibility more important

x86-64 adopted many RISC features

More registers; use them for argument passing

For embedded processors, RISC makes sense

Smaller, cheaper, less power

Most cell phones use ARM processor

CISC vs. RISC

Relevance for Data Science

Reflections on ISA

• Everything expressed in terms of values 0 and 1
• Communication

• Low or high voltage on wire

• Computation
• Compute Boolean functions

• Storage
• Store bits of information

Logic Design => Digital Design

Use voltage thresholds to extract discrete values from continuous signal

Simplest version: 1-bit signal

Either high range (1) or low range (0)

With guard range between them

Not strongly affected by noise or low quality circuit elements

Can make circuits simple, small, and fast

Digital Signals

Voltage

Time

0 1 0

Looking Forward https://qdev.nbi.ku.dk/
https://qmath.ku.dk/

Solid-state qubits

A qubit is a two-state (or two-level) quantum-mechanical system.
The state space of a two-level quantum mechanical system (qubit)
can be represented as a Riemann sphere.

https://qdev.nbi.ku.dk/
https://qmath.ku.dk/

ENIAC, U.Penn, 1945

Looking Back

Analytical Engine, C.Babbage, 1837,

ENIAC Architecture

• Representation of digits by
electric pulses

• Base 10 (data bus)

• 10 wires for data

• 1 wire for sign

• Hardwired functional units
(add/multiply)

• Vacuum tubes as basic
component

• Programming with
flip-flops, switches and
cables

Von Neumann Architecture https://ieeexplore.ieee.org/document/238389

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs

• With some, small delay

Computing with Logic Gates

Voltage

Time

a

b

Rising Delay Falling Delay a && b

Acyclic Network of Logic Gates
Vertices are logic gates; edges are signal transport

Continously responds to changes on primary inputs

Primary outputs become (after some delay) Boolean functions of primary
inputs

Combinational Circuits

Acyclic Network

Primary
Inputs

Primary
Outputs

Bit Equality

Bit equala

b

eq

bool eq = (a&&b)||(!a&&!b)

64-bit word size

HDL representation

Equality operation

Generates Boolean value

Word Equality

b63 Bit
equala63

eq63

b62 Bit
equala62

eq62

b1 Bit
equala1

eq1

b0 Bit
equala0

eq0

Eq

=
B

A
Eq

Word-Level Representation

bool Eq = (A == B)

Control signal s

Data signals a and b

Output a when s=1, b when s=0

Bit-Level Multiplexor

Bit MUX

b

s

a

out

bool out = (s&&a)||(!s&&b)

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

Arithmetic Logic Unit

Combinational logic

– Continuously responding to inputs

Control signal selects function computed

– Corresponding to 4 arithmetic/logical operations

– Overflow, Carry, Zero flags: OF, CF, ZF

A
L
U

Y

X

X + Y

0

A
L
U

Y

X

X - Y

1

A
L
U

Y

X

X & Y

2

A
L
U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B

Boolean logic and acyclic circuit of logic gates used to
represent arithmetic operations

Can logic gates be used to store bits?

Yes! With cyclic circuits of logic gates.

Storing bits

Storing 1 Bit

Vi

n
V
1

V
2

Storing 1 Bit (cont.)

Stable 0

Stable 1

MetastableVi

n
V
1

V
2

Vi

n
V
1

V
2

Vin = V2

Physical Analogy

Stable 0

Stable 1

Metastable

.Stable left . Stable right.

Metastable

Storing 1 Bit (cont.)

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

A

When A is 0
Q+ = q = 1
Q- = !q = 0

Q+

Q–

q

!q

q = 0 or 1

When no input
Q+ = q = 1
Q- = !q = 0

Storing 1 Bit (cont.)

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

A

When A is 1
Q+ = q = 0
Q- = !q = 1

Q+

Q–

q

!q

q = 0 or 1

When no input
Q+ = q = 0
Q- = !q = 1

Storage Element: Latch

Resetting
1

0

1 0

0 1

Setting
0

1

0 1

1 0

Storing
0

0

!q q

q !q

Bistable element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

R-S
Latch

Relevance for Data Science

FPGAs

Configurable Logic Block:

-Lookup Tables (LUT)

- Truth table

- Up to 6 inputs

-Storage Elements

- Flip-flop or latch

- Control signals

+ Multiplexers, Carry Logic,
Distributed RAM, Shift register

https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf

https://www.nandland.com/articles/boolean-algebra-using-look-up-tables-lut.html
https://www.nandland.com/articles/flip-flop-register-component-in-fpga.html

https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.nandland.com/articles/boolean-algebra-using-look-up-tables-lut.html
https://www.nandland.com/articles/flip-flop-register-component-in-fpga.html

Programming FPGAs

https://www.xilinx.com/products/design-tools/vitis.html

FPGA Synthesis Process

VHDL program

Hardware Description Language

Very simple hardware description language

Can only express limited aspects of hardware operation

Data Types
 bool: Boolean

• a, b, c, …
 int: words

• A, B, C, …
• Does not specify word size---bytes, 64-bit words, …

Statements
 bool a = bool-expr ;

 int A = int-expr ;

HDL Operations

Classify by type of value returned

Boolean Expressions
Logic Operations

• a && b, a || b, !a
Word Comparisons

• A == B, A != B, A < B, A <= B, A >= B, A > B
Set Membership

• A in { B, C, D }
– Same as A == B || A == C || A == D

Word Expressions
Case expressions

• [a : A; b : B; c : C]
• Evaluate test expressions a, b, c, … in sequence

• Return word expression A, B, C, … for first successful test

FPGA Synthesis Process

Functional Verification

Logic Design Summary

Computation
Performed by combinational logic

Computes Boolean functions

Continuously reacts to input changes (clock)

Storage elements combined into
Random-access memories

– Hold multiple words

– Possible multiple read or write ports

– Read word when address input changes

– Write word as clock rises

Moore’s Law and Dennard Scaling

Gordon Moore (1965): The
number of transistors in a
dense integrated circuit
doubles approximately every
two years.

Robert Dennard (1974): As
transistors get smaller their
power density stays constant

Consequence

The situation is getting more complex
https://newsroom.intel.com/wp-content/uploads/sites/11/2019/11/intel-oneapi-info.pdf

Diverse Cores

Choice of CPU based on ISA + extensions (security,
performance).

FPGA-based accelerators programmed as acyclic
networks of logic gates.

Trends lead to diverse cores (Dennard scaling).

Take-Aways

