
Operating Systems and C
Fall 2022
2. Representing Data

09.09.2021 · 1

Operating Systems and C
Fall 2022
2. Representing Data

09.09.2021 · 2

why do we bother looking into this?

Motivation: Performance

09.09.2021 3https://www.quora.com/What-is-the-best-way-to-declare-binary-matrices-in-C

Data Representation is crucial for data science, e.g.,
How to represent a binary matrix? (bits ⇒ ops bit-level)

Motivation: Security

09.09.2021 4

• Similar to code found in FreeBSD’s implementation of getpeername
• There are legions of smart people trying to find vulnerabilities in programs

expects type size_t (unsigned),
given an int. what happens? problem?

1. Two’s complement
2. Integer Arithmetic
3. Bit Manipulation

Outline

09.09.2021 5

we need a deeper understand of how
data is represented.

1. Finite representation
• There is a limit to the number of integers (put

differently, a max value) that can be represented on a
fixed number of bytes

2. Representing positive and negative integers
• Sign and values must be represented

More than one way to skin a cat.
What’s a sensible way?

Two issues

09.09.2021 · 6

one where mathematical operations
make sense!

Spoiler: Algebra: Ring (Finite Field) - Unsigned

7photo: https://dncsite.wordpress.com/tag/twos-complement/

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(8)Modular / Clock arithmetic.
https://stackoverflow.com/questions/7221409/is-unsigned-integer-subtraction-defined-behavior

parentheses:
how we interpret
the bits.

Spoiler: Algebra: Ring (Finite Field) - Signed

8photo: https://dncsite.wordpress.com/tag/twos-complement/

Modular / Clock arithmetic.
https://stackoverflow.com/questions/7221409/is-unsigned-integer-subtraction-defined-behavior

parentheses:
how we interpret
the bits.

why: because then, if you
keep incrementing, you
get larger numbers.

note: binary addition
overflowed, but correct
value got stored.

note: binary addition of 3
data-bits overflowed, thus
overwriting the sign bit

• Signed vs. unsigned

• Number of bytes
• 1B: char

• 2B: short

• 4B: int

• 4B (32 bits) or 8B (64 bits): long

• 8B: long long

Integer Types in C

09.09.2021 · 9

Shorts in C are coded on 2B. Used for examples in these slides.
2B = 16 bits,
or 4 Hexadecimals (prefixed with Ox)

Operations on sequences of bits:
• bitwise operations: and (&), or (|), not (~), xor (^), shift (<<, >>)
• (interpreted as Booleans) 0 is false; anything but 0 is true

logical operations: and (&&), or (||), not (!)
• (interpreted as integers)

arithmetic operations: +, -, *, /

Sequences of bits

09.09.2021 · 10

see book on
dec-bin, bin-dec,
dec-hex, hex-dec,
bin-hex, hex-bin

or:
onlinetoolz.net

hex: compact
representation of bits.

• 0x0000+1 = 0x0001; 0x000E+1 = 0x000F;
0x000F+1 = 0x0010

• 1 << 15 = 0x8000; 1 << 8 = 0x0100;
1 << 3 = 0x0008

• 0xEFFF+1 = 0xF000; 0x24BC+1 = 0x24BD
• ~0x0000 = 0xFFFF; ~0x0001 = 0xFFFE
• X+~X = 0xFFFF ; X&~X = 0

Bitwise Operations: Examples

09.09.2021 · 11

Bitwise on cos
https://github.com/mellowcandle/bitwise

Signed vs. Unsigned
Interpretation

09.09.2021 · 12

Unsigned Signed (two’s complement)

Sign
Bit

A sequence of bits is interpreted differently
depending on whether the integer type

is unsigned or signed.

0xA000

40960
-24576

https://onlinetoolz.net/unsigned-signed

same bits; different interpretations as numbers.

-x is not just
bits of x w/ a 1 in sign

how much each bit
contributes to value

Identical Interpretation?

13

book has interesting results on
when bits have identical unsigned & signed interpretation.
(outside range, conversion either adds or subtracts 2w)

$ vi /usr/include/limits.h

Integer Types in C

09.09.2021 · 14

0x0000
0xFFFF

0x8000

0x7FFF

1 bit reserved
for sign

there’s 1 more
neg than pos

Signed Integers

09.09.2021 · 15

 short int x = 15213;
 short int y = -15213;

Two’s Complement. Representation on N bytes
• Positive numbers:

• Sign bit is 0

• Binary representation of value on (8*N)-1 bits
• Negative numbers:

• Binary representation of corresponding positive value on 8*N
bits

• Invert all digits (0 becomes 1; 1 becomes 0)

• Add one o.O why?

yup, that checks out. but why?

given 0s and 1s,
how do I interpret it?

Substracting from 00000000 or substracting from 100000000 is the same for
all practical purpose (as the borrowing is carried forward beyond the 8th bit).
So, in 2’s complement -x is represented by

28 – x = 100000000 - x = 11111111 + 1 - x = (11111111 - x) + 1

As we have seen (now with 8 bits):
~x + x = 11111111 => (11111111 - x) = ~x

In two’s complement on w bits
-x is represented as 2w – x

=> ~x + 1

Why this works?

09.09.2021 · 16

EXAMPLE WITH 8 bits

recall: ~x is x with bits flipped

in other words: -x is
“what must I add to x to get 0?”
(answer: ~x + 1)

What does 0xFFFFFFFF represent?

How about 0x80000000?

Two’s complement

09.09.2021 · 17

What does 0xFFFFFFFF represent?

How about 0x80000000?

Two’s complement

09.09.2021 · 18

hint

19

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(8)

Bit extension - adding a ring

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(8)

1 in front

0 in front

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(8)

Bit extension - adding a ring

0 in front

1 in front

…

why this way: storing
4-bit value in 5-bit space
⇒ old bits are unchanged!
(new 5th bit is just 0)

Sign extension - adding a ring (bit extension, signed)

1 in front

0 in front

Sign extension - adding a ring (bit extension, signed)

1 in front
(new neg)

0 in front
(new pos)

1 in front
(old neg)

0 in front
(old pos)

23
…

new pos

new neg

even more positive,
even more negative

this helps explain
the following slide.
(analogy:
 arithmetic right shift)

Sign extension - adding a ring (bit extension, signed)

1 in front
(old neg)

0 in front
(old pos)

why this way: storing
4-bit value in 5-bit space
⇒ old bits are unchanged!
(5th bit is 0 if pos, 1 if neg)

Sign Extension

09.09.2021 · 24

Make k copies of sign bit:

X ′ = x
w–1

,…, x
w–1

, x
w–1

, x
w–2

,…, x
0

• • •X

X
′

• • • • • •

• • •

w

wk

k copies of Most Significant Bit

Most Significant Bit

Expanding: Converting from smaller
to larger integer data type

the overall value of negative numbers
does not change.

Sign Extension

09.09.2021 · 25

C automatically performs sign extension

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

easy in C!
(one of the nice properties of
two’s complement)

Expanding (e.g., short int to int)

Unsigned: zeros added (on left)

Signed: sign extension (as shown on previous slides)

Both yield expected result

Truncating (e.g., unsigned to unsigned short)

Unsigned/signed: bits are truncated

Result reinterpreted

Unsigned: mod operation

Signed: depends on bit pattern (large negative number might be
truncated to positive number)

Sign Extension

09.09.2021 · 26

In C type system,

If there is a mix of signed and unsigned values in an
expression, then signed values are implicitly cast to
unsigned:

• The bit pattern is maintained

• But re-interpreted!!

• Can have unexpected effects => adding or subtracting 2N

Why do we care?

09.09.2021 · 27

Security, Revisited

09.09.2021 28

memcpy

09.09.2021 · 29

From GNU glibc manual /Appendix A – Language Features /Important Data Types:

https://www.gnu.org/software/libc/manual/html_node/index.html#Top

Security - Woops

09.09.2021 30

-528 in two’s complement:
0xFFFFFDF0 Reinterpreted as unsigned within

memcpy: 4294966768 (decimal)

Why do we care?

09.09.2021 · 31

Always be mindful/careful
of unsigned integers!

1. Two’s complement
2. Integer Arithmetic
3. Bit Manipulation

Outline

09.09.2021 32

How to deal with finite representation?

Adding two integers encoded on w bytes
Should take w+1 bytes

How to encode the sum on w bytes?

No magic!! The sum will overflow

Integer Arithmetic

09.09.2021 · 33
story time (Java standard library)

Unsigned Addition

09.09.2021 · 34

• • •
• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAdd
w
(u , v)

UAdd
w
(u , v) is u+v mod 2w

overflow

Signed Addition

09.09.2021 · 35

TAdd and UAdd have Identical Bit-Level Behavior
Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);

 t = u + v

Will give s == t

• • •
• • •

u

v+
• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAdd
w
(u , v)

overflow

Signed Addition

09.09.2021 · 36

Beware:
This is undefined
behavior in C!

09.09.2021 · 37

Unsigned Multiplication in C

Standard Multiplication Function
Ignores high order w bits

Implements Modular Arithmetic
UMult

w
(u , v) = u · v mod 2w

• • •
• • •

u

v*
• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMult

w
(u , v)

• • •

09.09.2021 · 38

Signed Multiplication in C

Standard Multiplication Function
Ignores high order w bits

Some of which are different for
signed vs. unsigned multiplication

Lower bits are the same

• • •
• • •

u

v*
• • •u · v

• • •
True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMult

w
(u , v)

• • •

09.09.2021 · 39

Power-of-2 Multiply with Shift

Operation

u << k gives u * 2k

Both signed and unsigned

Examples

u << 3== u * 8
u << 5 - u << 3== u * 24

• • •
0 0 1 0 0 0•••

u

2
k

*
u ·
2k

True Product: w+k bits

Operands: w bits

Discard k bits: w bits UMult
w
(u , 2k)

•••

k

• • • 0 0 0•••

TMult
w
(u , 2k)

0 0 0••••••

1. Two’s complement
2. Integer Arithmetic
3. Bit Manipulation

Outline

09.09.2021 40

TCP Header

Bit Representation

09.09.2021 · 41

Is Ack flag set?
Is any TCP flag set?
Is a single flag set?
How many TCP flags are set?

to answer these,
you need to work with bitwise representations.

small puzzles;
what the assignment is about

• 00000000 interpreted as False
• Byte containing at least a 1, e.g.,

00100010 interpreted as True
• X is a sequence of bit

• X interpreted as Boolean expression (X != 0)

• !X interpreted as Boolean expression (X == 0)

Beware difference between:
• Bitwise operations applied on sequence of bits

&, |, ~, ^, >>, <<
• Logical operations applied on Booleans

&&, ||, !

Sequence of bits and boolean

09.09.2021 · 42

EXAMPLE WITH 8 bits

Consider the TCP flags encoded on 8 bits as X.

How do you test whether the Ack flag (0x10) is set?
How do you test whether any flag is set?
How do you test if a single flag is set?
How do you count the number of flags set?

TCP Problem

09.09.2021 · 43

• How do you test whether the Ack flag (0x10) is set?
(X & 0x10)
=> interpreted as false if flag not set, true otherwise

• How do you test whether any flag is set?
(X)
 => interpreted as false if no flag is set , true otherwise

• How do you test if a single flag is set?
((X & (X-1)) == 0) && (X != 0)
=> (X & (X-1)) transforms the rightmost 1-bit into a 0-bit

Answers

09.09.2021 · 44

small puzzles!
some hate it; we like it (beauty)

How do you count the number of flags set?

Divide and conquer

Trivial for 2 bits
0+0 -> 00

0+1 -> 01

1+0 -> 01

1+1 -> 10

Answers

09.09.2021 · 45

Answers

09.09.2021 · 46

x = (x & 0x5555) + ((x >> 1) & 0x5555)
x = (x & 0x3333) + ((x >> 2) & 0x3333)
x = (x & 0x0F0F) + ((x >> 4) & 0x0F0F)
x = (x & 0x00FF) + ((x >> 8) & 0x00FF)

& 0x5555

& 0x3333

& 0x0F0F

x is a short: 2B

Masks

Bitwise
operations
in parallel

& 0x00FF

Motivation: Performance

09.09.2021 47https://www.quora.com/What-is-the-best-way-to-declare-binary-matrices-in-C

Fast binary matrix operations

Two complements used to represent signed integers

Two complements procedure is:
1. Write positive value in binary
2. Invert all digits
3. Add 1

Beware implicit cast to unsigned in C!!

Bit manipulation enables efficient operations.
It is a rich algorithmic playground.

Take Aways

09.09.2021 · 48

security

performance

