
Operating Systems and C
Fall 2022
1. Computer Systems

02.09.2021 · 1

Why teach about operating systems?
Why teach about C?
Why teach about operating systems AND C?

Why this course?

02.09.2021 · 2

“An operating system (OS) is a program that manages
computer hardware. And although today's
commercial-off-the-shelf desktop operating systems appear to
be an integral part of PCs and workstation to many users, a
fundamental understanding of the algorithms, principles,
heuristics, and optimizations used is crucial for creating efficient
application software. Furthermore, many of the principles in OS
courses are relevant to large system applications like databases

and web servers.”
A. Polze (U.Potsdam)

Why this course?

02.09.2021 · 3

OS gives upper layers abstraction over available HW.
learning OS is learning principles of how app is structured.
organization of OS not just relevant for OS, but other large applications.

Computer Hardware

02.09.2021 · 4

AWS EC2 instance types

“C has the power of assembly language and the
convenience of … assembly language.”
D. Ritchie

”Learn at least one programming language every year.”
A.Hunt and D.Thomas, The Pragmatic Programmer.

Why this course?

02.09.2021 · 5

C is a mess. syntactic sugar on top of assembly (Linus Torvalds quote)
why learn C: to understand how computers work. (C and Linux)
care about security, performance, resource utilization? C gives control.
high-level PLs abstract away many issues.
learn a PL each semester. this semester: C.

Why this course?

02.09.2021 · 6

• The success of the UNIX system stems from
its tasteful selection of a few key ideas and
their elegant implementation. The model of
the Unix system has led a generation of
software designers to new ways of thinking
about programming. The genius of the Unix
system is its framework, which enables
programmers to stand on the work of
others.

• Ken Thompson also created an interpretive
language called B, based on BCPL, which he
used to re-implement the non-kernel parts
of Unix. Ritchie added types to the B
language, and later created a compiler for
the C language. Thompson and Ritchie
rewrote most of Unix in C in 1973, which
made further development and porting to
other platforms much easier.

ACM citation:
C has a rich history. UNIX - C

Why this course?

https://github.com/torvalds/linux

https://gcc.gnu.org/

linux written in C. extremely successful OS.
compiled using gcc. open-source movement.

What is in it for you?

02.09.2021 · 8

You want to become
a software
engineer?

You want to become
a programmer?

You want to become
a data engineer?

You want to get your
Bachelor?

• Deep understanding of how computer systems
impact software design

• Way to learn a new programming language
• Proficiency in shell, Linux, vim
• (First) experience with system programming

Security | Performance

• General knowledge: history, (geo-)politics, business

What is in it for you?

02.09.2021 · 9

linux written in C. extremely successful OS.
compiled using gcc. open-source movement.

Part I: Overview
1. Why this course?
2. What is in it for you?

Part II: What is this class about?
1. Computer Systems
2. Operating Systems
3. C Programming Language
4. Take-away

Part III: Logistics

Outline

02.09.2021 10

Computers implement a model of
computation ("mechanized arithmetic").

Many models of computation exist.
● Turing Machine, Counter Machines, …

Why current computation model?
(CISC, RAM, Von-Neumann Arch., …)
(choice seems arbitrary!)
● performance
● cost, convenience

Model of Computation

· 11

pc

program

Marvin Minsky,
1967

Alan Turing,
1937

Turing Machine

Minsky
Machine

systems research:
manage trade-offs!

A system is a set of interconnected components with a
well-defined behavior at the interface with its
environment.

Coping with system complexity:
• Modularity, Abstraction, Layering, Hierarchy

Systems

02.09.2021 · 12

3 fundamental abstractions for computer systems:
• Interpreter
• Memory
• Communication

Computer Systems

02.09.2021 · 13

Memory Abstraction

02.09.2021 · 14

Source: Saltzer and Kaashoek

Associativity
Layer

Location-add
ressed

Memory

WRITE(name, value) WRITE(address, value)

READ(address)READ(name)

Associative Memory

yes,
memory

is an abstraction

Interpreter Abstraction

02.09.2021 · 15

Source: Saltzer and Kaashoek

Instruction
repertoire

Memory

Instructions

Data

Retrieve next
instruction

Interpret
instruction

Interrupt
signal?

Change
instruction and
environment

reference

Instructio
n

reference

Environmen
t reference

Yes

No

Interpreter
Instruction reference: where to find next instruction
Repertoire: set of actions associated to an instruction
Environment reference: where to find the current state
on which the interpreter should perform the actions of the
current instruction

Communication Abstraction

02.09.2021 · 16

Source: Saltzer and Kaashoek

Communication Link
SEND(link_name, outgoing_message_buffer)

RECEIVE(link_name, incoming_message_buffer)

Layered view of a Computer System

02.09.2021 · 17

Processor

Operating System

Application Programs

Main
Memory I/O Devices

Software

Hardware
+

Firmware

OS is a layer on top of hardware.
OS manages HW, provides abstractions to apps

Computer Hardware

02.09.2021 · 18

Main
memor
y

I/O
bridgeBus interface

AL
U

Registers

CPU

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Dis
k

I/O bus
Expansion slots for
other devices such
as network adapters

hello executable
stored on disk

PC

How does a CPU work?

02.09.2021 · 19

I/O
bridge

CPU

System bus Memory bus

A single core CPU can be seen as one interpreter

Retrieve next
instruction

Interpret
instruction

Interrupt
signal?

Change
instruction and
environment

reference

Yes

No

Instructions

Data

Main memory

Instruction
repertoire:

CISC / RISC

How does a CPU work?

02.09.2021 · 20

Regs

L1
d-cac
he

L1
i-cach
e

L2 unified cache

Core 0

Regs

L1
d-cac
he

L1
i-cach
e

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

The situation is getting more complex

02.09.2021 · 21

https://newsroom.intel.com/wp-content/uploads/sites/11/2019/11/intel-oneapi-info.pdf

How does main memory work?

•Main memory is an array of
bytes.

•Each byte has a unique
address.

•Address space is linear.

Technology:
-DRAM, SRAM: transient
-3D Xpoint: persistent

02.09.2021 · 22

…

0x000000000000

0x000000000001

0x000000000002

0xFFFFFFFFFFFF

0xFFFFFFFFFFFE

0xFFFFFFFFFFFD

0xFFFFFFFFFFFC

Memory Hierarchy

02.09.2021 · 23

Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks
on remote network
servers.

Main memory holds disk
blocks retrieved from local
disks.

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from cache memory.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from memory.

L6:

Latency Numbers Every Programmer Should Know

02.09.2021 · 24

https://colin-scott.github.io/personal_website/research/interactive_latency.html

in the last years:
only SSD have sped up significantly.

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Part I: Overview
1. Why this course?
2. What is in it for you?

Part II: What is this class about?
1. Computer Systems
2. Operating Systems
3. C Programming Language
4. Take-away

Part III: Logistics

Outline

02.09.2021 25

for now, remember
fundamental abstractions:

● interpreter,
● memory,
● communication

An operating system (OS) is a program that manages
computer hardware.

Operating Systems

02.09.2021 · 26

OS Abstractions

02.09.2021 · 27

Processor Main memory I/O devices

Processes

Files

Virtual memory

process represents processor in HW,
virtual memory represents main memory in HW,
file represents IO devices

• A process:
• OS Abstraction of a running program

• An interpreter

• On multi-core CPUs:
• Multiple processes run simultaneously

• On each core:
• Multiple processes can execute concurrently.

They share the same physical core

• Need to switch from one interpreter to another.

Processes

02.09.2021 · 28

Virtual Memory

02.09.2021 · 29

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data

Read-only code and data

Loaded from the
hello executable file

printf function

Program
start

In Linux, files are a universal abstraction for all I/O
devices.

A file is an array of bytes.

A file has a unique name (file descriptor).

Basic operations on files are create/delete, open/close,
read/write

I/O Devices

02.09.2021 · 30

Part I: Overview
1. Why this course?
2. What is in it for you?

Part II: What is this class about?
1. Computer Systems
2. Operating Systems
3. C Programming Language
4. Take-away

Part III: Logistics

Outline

02.09.2021 31

for now, remember
Operating System abstractions:

● process,
● virtual memory,
● file

How to write programs that manage computer
hardware?

• OS kernel
• Embedded systems
• Infrastructure software that must tightly control its

use of hardware resources:
• Compilers, Database systems, Version control,

System programming

02.09.2021 · 32

More portable than assembly.

Efficient enough to give programmers full
control/responsibility over processes, virtual memory
and file abstractions

Alternatives: Rust (Mozzilla), C++
Extensions: OpenCL, OneAPI

C for system programming

02.09.2021 · 33

https://www.rust-lang.org/en-US/

Chapter 7 (specially section 7.5 in Programming
Languages Concepts)

C is an imperative programming language.
C is a permissive statically typed language.

C as a Programming Language

02.09.2021 · 34

Programming Language Concepts,
"Programs as Data" course

Compilation phases

02.09.2021 · 35

Pre-
processo
r
(cpp)

hello.i

Compiler
(cc1)

hello.s
Assembl
er
(as)

hello.o Linker
(ld)

hellohello.c

Source
program
(text)

Modifie
d
source
program
(text)

Assembly
program
(text)

Relocatable
object
programs
(binary)

Executable
object
program
(binary)

printf.o

$ gcc -save-temps hello.c

https://github.com/gcc-mirror/gcc

DEMO

“The standard library provides a variety of functions, a few of
which stand out as especially useful.” K&R

“By the way, printf is not part of the C language; there is no
input or output defined in C itself. There is nothing magic about
printf ; it is just a useful function which is part of the standard
library of routines that are normally accessible to C programs.”
K&R

The C Standard Library

02.09.2021 · 36

http://www.gnu.org/software/libc/manual/pdf/libc.pdf
http://ws3.ntcu.edu.tw/ACS099133/cheatsheet/c-libraries-cheatsheet.pdf

C language itself very minimal. even printing is part of stdio library.
when learning C, you must be acquainted w/ C library.

http://www.gnu.org/software/libc/manual/pdf/libc.pdf
http://ws3.ntcu.edu.tw/ACS099133/cheatsheet/c-libraries-cheatsheet.pdf

The C Standard Library

02.09.2021 · 37

“C is quirky, flawed, and an enormous success. While
accidents of history surely helped, it evidently satisfied
a need for a system implementation language efficient
enough to displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and
interactions in a wide variety of environments. “

Design Goals

02.09.2021 · 38

http://csapp.cs.cmu.edu/3e/docs/chistory.html

language trusts you to do the right thing (what needs to be done).
trade-off between fast and reliable/definite/portable.
if not careful, you might write programs w/ unintended consequences

(a) Trust the programmer.
(b) Don't prevent the programmer from doing what

needs to be done.
(c) Keep the language small and simple.
(d) Provide only one way to do an operation.
(e) Make it fast, even if it is not guaranteed to be

portable.
(f) Make support for safety and security demonstrable

Spirit of C

02.09.2021 · 39

“Coding style is all about readability and maintainability
using commonly available tools.” L. Torvald

1) Indentation
2) Breaking long lines
3) Placing Braces and Spaces
4) Naming
5) Typedefs
6) Functions
7) Centralized exiting of functions [goto considered helpful]
8) Commenting
9) Function return values and names

Coding Style

02.09.2021 · 40

https://github.com/torvalds/linux/blob/master/Documentation/process/coding-style.rst

Imperative language

Static (but permissive) type checking

Minimal run-time support:
• Explicit memory management

• Explicit threads programming

• Efficient mapping to assembly code

Key Features

02.09.2021 · 41

Current standard: C11
Unicode support, threads.h, stdatomic.h,
type generic expressions

Past standards: C99, C95, C90, C89
Removed features from K&R C (such as implicit int
or partial function prototypes). Introduced long,
variable length arrays, and many library headers.

Future standard: C2X (charter), planned for 2023 (C23)

Latest version of gcc released July 2020: gcc 11.2
https://gcc.gnu.org/gcc-11/

Standards

02.09.2021 · 42

http://www.open-std.org/jtc1/sc22/wg14/

Q: what if the standard does not define a behavior?
A: then it's up to the compiler writer. (anything could happen. ex:)

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2478.pdf

“In a safe programming language, errors are trapped as they
happen. Java, for example, is largely safe via its exception
system. In an unsafe programming language, errors are not
trapped. (…)
[In C], anything at all can happen; the Standard imposes no
requirements. The program may fail to compile, or it may
execute incorrectly (either crashing or silently generating
incorrect results), or it may fortuitously do exactly what the
programmer intended.”
John Regehr

Undefined Behavior

02.09.2021 · 43

https://blog.regehr.org/archives/213
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

https://blog.regehr.org/archives/213
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

What happens if we add 1 to the largest integer?
This is undefined behavior.

Undefined Behavior

02.09.2021 · 44

#include <limits.h>
#include <stdio.h>

int main (void)
{

printf ("%d\n", (INT_MAX+1) < 0);
return 0;

}

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html
^-- core undefined behavior

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html

Part I: Overview
1. Why this course?
2. What is in it for you?

Part II: What is this class about?
1. Computer Systems
2. Operating Systems
3. C Programming Language
4. Take-away

Part III: Logistics

Outline

02.09.2021 45

You will learn how the hardware infrastructure impacts
software with a focus on either performance or
security.
We will cover in details programming issues related to
the three fundamental abstractions provided by
operating systems:
• Processes are interpreters
• Memory is an array of bytes
• I/O devices are seen as files

Take-aways

02.09.2021 · 46

4 compilation phases: preprocessing, compiler,
assembler, linker

The C standard library contains collections of useful
functions

The C standard creates undefined behaviours. Beware!

Take-aways

02.09.2021 · 47

Part I: Overview
1. Why this course?
2. What is in it for you?

Part II: What is this class about?
1. Computer Systems
2. Operating Systems
3. C Programming Language
4. Take-away

Part III: Logistics

Outline

02.09.2021 48

1. (learnit;) github.itu.dk; slack [show]
2. textbooks: CS:APP, LCTHW
3. lectures (2hr), exercises (2hr)
4. assignments (next slide)
5. exam (take-home, based on assignments)

Logistics

02.09.2021 · 49

• 3 assignments:

datalab

perflab | attacklab

malloclab

• Exam: 4 questions – 25% each
(datalab, perflab|attacklab,
malloclab, topics from the class)

*: SD (a master program) has a
 higher passing criteria on the
 assignments.

Logistics - You

• 2 assignments:

datalab

perflab

• Exam: 3 questions – 33% each
(datalab, perflab, topics from class)

SWU, SD* DS

02.09.2021 · 50

two tracks!

hardest so far

don't underestimate the labs!

● Willard Rafnsson: course responsible

● Niclas Hedam: head-TA (PhD, SWU)
● Alexander Berg: TA (CS, SWU)
● Mikkel Lippert: TA (SWU)
● Noah Brunken Syrkis: TA (DS)
● Viktor Bello Thomsen: TA (DS)

Logistics - We

· 51
communication policy:

no e-mails

https://www.willardthor.com/
https://hed.am/
https://learnit.itu.dk/user/profile.php?id=20475
https://learnit.itu.dk/user/profile.php?id=20585
https://learnit.itu.dk/user/profile.php?id=18472
https://learnit.itu.dk/user/profile.php?id=18568

