
Operating Systems and C, Fall 2022
Perflab: Code Optimization

1 Introduction

This assignment deals with optimizing memory intensive code. Image processing offers many examples of
functions that can benefit from optimization. In this lab, we will consider two image processing operations:
rotate, which rotates an image counter-clockwise by 90◦, and smooth, which “smooths” or “blurs” an
image.

For this lab, we will consider an image to be represented as a two-dimensional matrix M , where Mi,j

denotes the value of (i, j)th pixel of M . Pixel values are triples of red, green, and blue (RGB) values. We
will only consider square images. Let N denote the dimension of an image, i.e., the number of rows (or
columns) of an image. Rows and columns are numbered, in C-style, from 0 to N − 1.

Given this representation, the rotate operation can be implemented quite simply as the combination of
the following two matrix operations:

• Transpose: For each (i, j) pair, Mi,j and Mj,i are interchanged.

• Exchange rows: Row i is exchanged with row N − 1− i.

This combination is illustrated in Figure 1.

The smooth operation is implemented by replacing every pixel value with the average of all the pixels
around it (in a maximum of 3 × 3 window centered at that pixel). Consider Figure 2. The values of pixels
M2[1][1] and M2[N-1][N-1] are given below:

M2[1][1] =

∑2
i=0

∑2
j=0 M1[i][j]

9

M2[N− 1][N− 1] =

∑N−1
i=N−2

∑N−1
j=N−2 M1[i][j]

4

2 Logistics

This is an individual assignment. Instructions follow.

1



Rotate by 90 

(counter−clockwise)

Transpose
Exchange

Rows

j

i

i

j

i

j

(0,0)

(0,0)

(0,0)

Figure 1: Rotation of an image by 90◦ counterclockwise

smooth

M1[1][1]

M1[N−1][N−1]

M2[1][1]

M2[N−1][N−1]

Figure 2: Smoothing an image

2



3 Hand Out Instructions

The instructions for accessing the files you need for this assignment, and the handout instructions are de-
scribed on ITUs github at:

https://github.itu.dk/OSC/22-Lab2-perflab

The file that you are modifying and handing in is kernels.c. The driver.c program is a driver
program that allows you to evaluate the performance of your solutions. Use the command make driver
to generate the driver code and run it with the command ./driver.

Looking at the file kernels.c you’ll notice a C structure team into which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do this right
away so you don’t forget.

4 Implementation Overview

Data Structures

The core data structure deals with image representation. A pixel is a struct as shown below:

typedef struct {
unsigned short red; /* R value */
unsigned short green; /* G value */
unsigned short blue; /* B value */

} pixel;

As can be seen, RGB values have 16-bit representations (“16-bit color”). An image I is represented as a one-
dimensional array of pixels, where the (i, j)th pixel is I[RIDX(i,j,n)]. Here n is the dimension of the image
matrix, and RIDX is a macro defined as follows:

#define RIDX(i,j,n) ((i)*(n)+(j))

See the file defs.h for this code.

Rotate

The following C function computes the result of rotating the source image src by 90◦ and stores the result in desti-
nation image dst. dim is the dimension of the image.

void naive_rotate(int dim, pixel *src, pixel *dst) {
int i, j;

for(i=0; i < dim; i++)
for(j=0; j < dim; j++)

dst[RIDX(dim-1-j,i,dim)] = src[RIDX(i,j,dim)];

3



return;
}

The above code scans the rows of the source image matrix, copying to the columns of the destination image matrix.
Your task is to rewrite this code to make it run as fast as possible using techniques like code motion, loop unrolling
and blocking.

See the file kernels.c for this code.

Smooth

The smoothing function takes as input a source image src and returns the smoothed result in the destination image
dst. Here is part of an implementation:

void naive_smooth(int dim, pixel *src, pixel *dst) {
int i, j;

for(i=0; i < dim; i++)
for(j=0; j < dim; j++)

dst[RIDX(i,j,dim)] = avg(dim, i, j, src); /* Smooth the (i,j)th pixel */

return;
}

The function avg returns the average of all the pixels around the (i,j)th pixel. Your task is to optimize smooth
(and avg) to run as fast as possible. (Note: The function avg is a local function and you can get rid of it altogether to
implement smooth in some other way.)

This code (and an implementation of avg) is in the file kernels.c.

Performance measures

Our main performance measure is CPE or Cycles per Element. If a function takes C cycles to run for an image of
size N × N , the CPE value is C/N2. Table 1 summarizes the performance of the naive implementations shown
above and compares it against an optimized implementation. Performance is shown for 5 different values of N . All
measurements were made on fallon.

The ratios (speedups) of the optimized implementation over the naive one will constitute a score of your implementa-
tion. To summarize the overall effect over different values of N , we will compute the geometric mean of the results
for these 5 values. That is, if the measured speedups for N = {64, 128, 256, 512, 1024} are R64, R128, R256, R512

and R1024 then we compute the overall performance as

R = 5
√

R64 ×R128 ×R256 ×R512 ×R1024

Assumptions

To make life easier, you can assume that N is a multiple of 64. Your code must run correctly for all such values of N ,
but we will measure its performance only for the 5 values shown in Table 1.

4



Test case 1 2 3 4 5
Method N 64 128 256 512 1024 Geom. Mean
Naive rotate (CPE) 2.8 4.4 6.3 10.3 11.8
Optimized rotate (CPE) 2.1 2.2 2.3 2.4 3.6
Speedup (naive/opt) 1.3 2.0 2.8 4.3 3.2 2.5
Method N 32 64 128 256 512 Geom. Mean
Naive smooth (CPE) 69.3 73.8 74.1 74.7 74.7
Optimized smooth (CPE) 15.8 16.5 16.7 16.8 16.8
Speedup (naive/opt) 4.4 4.5 4.4 4.4 4.5 4.4

Table 1: CPEs and Ratios for Optimized vs. Naive Implementations

5 Infrastructure

We have provided support code to help you test the correctness of your implementations and measure their perfor-
mance. This section describes how to use this infrastructure. The exact details of each part of the assignment is
described in the following section.

Note: The only source file you will be modifying is kernels.c.

Versioning

You will be writing many versions of the rotate and smooth routines. To help you compare the performance of
all the different versions you’ve written, we provide a way of “registering” functions.

For example, the file kernels.c that we have provided you contains the following function:

void register_rotate_functions() {
add_rotate_function(&rotate, rotate_descr);

}

This function contains one or more calls to add rotate function. In the above example,
add rotate function registers the function rotate along with a string rotate descr which is an ASCII
description of what the function does. See the file kernels.c to see how to create the string descriptions. This
string can be at most 256 characters long.

A similar function for your smooth kernels is provided in the file kernels.c.

Driver

The source code you will write will be linked with object code that we supply into a driver binary. To create this
binary, you will need to execute the command

cos> make driver

You will need to re-make driver each time you change the code in kernels.c. To test your implementations, you
can then run the command:

5



cos> ./driver

The driver can be run in four different modes:

• Default mode, in which all versions of your implementation are run.

• Autograder mode, in which only the rotate() and smooth() functions are run. This is the mode we will
run in when we use the driver to grade your handin.

• File mode, in which only versions that are mentioned in an input file are run.

• Dump mode, in which a one-line description of each version is dumped to a text file. You can then edit this text
file to keep only those versions that you’d like to test using the file mode. You can specify whether to quit after
dumping the file or if your implementations are to be run.

If run without any arguments, driver will run all of your versions (default mode). Other modes and options can be
specified by command-line arguments to driver, as listed below:

-g : Run only rotate() and smooth() functions (autograder mode).

-f <funcfile> : Execute only those versions specified in <funcfile> (file mode).

-d <dumpfile> : Dump the names of all versions to a dump file called <dumpfile>, one line to a version
(dump mode).

-q : Quit after dumping version names to a dump file. To be used in tandem with -d. For example, to quit
immediately after printing the dump file, type ./driver -qd dumpfile.

-h : Print the command line usage.

Team Information

Important: Before you start, you should fill in the struct in kernels.c with information about your team (group
name, team member names and email addresses). This information is just like the one for the Data Lab.

6 Assignment Details

Optimizing Rotate (50 points)

In this part, you will optimize rotate to achieve as low a CPE as possible. You should compile driver and then
run it with the appropriate arguments to test your implementations.

For example, running driver with the supplied naive version (for rotate) generates the output shown below:

cos> ./driver
Teamname: wilr
Member 1: Willard Rafnsson
Email 1: wilr@itu.dk [...]

Rotate: Version = naive_rotate: Naive baseline implementation:
Dim 64 128 256 512 1024 Mean
Your CPEs 2.9 4.2 6.7 9.9 10.3
Baseline CPEs 14.7 40.1 46.4 65.9 94.5
Speedup 5.1 9.4 7.0 6.7 9.2 7.3 [...]

6



Optimizing Smooth (50 points)

In this part, you will optimize smooth to achieve as low a CPE as possible.

For example, running driver with the supplied naive version (for smooth) generates the output shown below:

cos> ./driver [...]

Smooth: Version = naive_smooth: Naive baseline implementation:
Dim 32 64 128 256 512 Mean
Your CPEs 65.3 67.0 67.0 51.7 63.6
Baseline CPEs 695.0 698.0 702.0 717.0 722.0
Speedup 10.6 10.4 10.5 13.9 11.4 11.3 [...]

Some advice. Look at the assembly code generated for the rotate and smooth. Focus on optimizing the inner
loop (the code that gets repeatedly executed in a loop) using the optimization tricks covered in class. The smooth is
more compute-intensive and less memory-sensitive than the rotate function, so the optimizations are of somewhat
different flavors.

Coding Rules

You may write any code you want, as long as it satisfies the following:

• It must be in ANSI C. You may not use any embedded assembly language statements.

• It must not interfere with the time measurement mechanism. You will also be penalized if your code prints any
extraneous information.

You can only modify code in kernels.c. You are allowed to define macros, additional global variables, and other
procedures in these files.

Evaluation

Your goal is to write versions of rotate and smooth that are correct and do better than the supplied naive one. You
are encouraged to write several versions of each function.

Your code should not lead the driver to complain! This includes code that correctly operates on the test sizes, but
incorrectly on image matrices of other sizes. As mentioned earlier, you may assume that the image dimension is a
multiple of 64.

When you have completed the lab, you will hand in one file, kernels.c. The instructions for submitting that file
are on github (see above).

7


