
IT
 U

N
IV

ER
SI

TY
 O

F
CO

PE
N

H
A

G
EN

SUBMISSION OF WRITTEN WORK
Class code:

Name of course:

Course manager:

Course e-portfolio:

Thesis or project title:

Supervisor:

Full Name: Birthdate (dd/mm-yyyy): E-mail:

1. @itu.dk

2. @itu.dk

3. @itu.dk

4. @itu.dk

5. @itu.dk

6. @itu.dk

7. @itu.dk

 1409003U

Operating Systems and C

 Philippe Bonnet

 Exam in Operating Systems and C

22/11-1995Niclas Hedam nhed

Exam in Operating Systems and C

Niclas Hedam

December 19, 2018

Contents

1 Data Lab 2
1.1 A . 2
1.2 B . 2

2 Attack Lab 4
2.1 A . 4
2.2 B . 4

3 Malloc Lab 7
3.1 A . 7
3.2 B . 7

4 Topics from the class 10
4.1 A . 10
4.2 B . 11
4.3 C . 11
4.4 D . 12

1

1. Data Lab

1.1 A

The function f(x, y) determines whether y can be subtracted from x without
overflowing. An integer overflow happens when an arithmetic operation tries
to create an integer outside of the range, that the system can represent. This
functionality can be proved with a truth table as seen below.

b c d ¬(b Y ¬c) ∧ (b Y d))

T T T T

T T F T

T F T T

T F F F

F T T F

F T F T

F F T T

F F F T

The truth table describes that the only two cases where the function will
return 0, is when

• x is negative, y is positive, and the result of x− y is positive.

• x is positive, y is negative, and the result of x− y is negative.

These results cannot mathematically happen, which proves that an overflow
has occurred.

1.2 B

2

1 #inc lude <s t d i o . h>
2 #inc lude < s t d l i b . h>
3 #inc lude < l i m i t s . h>
4
5 #def ine TRUE(a , m) i f (! a) { p r i n t f (” [ERROR] \”%s \” d id not

pas s \n” , m) ; e x i t (1) ; }
6 #def ine FALSE(a , m) TRUE(! a , m)
7
8 i n t f (i n t x , i n t y) {
9 i n t a = x+˜y+1;

10 i n t b = x>>31;
11 i n t c = y>>31;
12 i n t d = a>>31;
13 re tu rn ! (˜ (b ˆ ˜c) & (b ˆ d)) ;
14 }
15
16 i n t main (i n t argc , char ∗∗ a rgv) {
17 TRUE(f (INT MAX , INT MAX) , ” C l a s s 1”) ;
18 TRUE(f (−1 , INT MAX) , ” C l a s s 2”) ;
19 FALSE(f (INT MAX , −1) , ” C l a s s 3”) ;
20 }

The function f(x, y) can be partitioned into three equivalence classes which
are when

• x and y have the same sign-bit, which causes no overflow

• x and y have different sign-bits, but x has the same sign-bit as x− y,
which causes no overflow

• x and y have different sign-bits, but x has a different sign-bit than
x− y, which causes an overflow.

The three test cases written in the test function covers the three classes, and
the function is therefore covered sufficiently.

3

2. Attack Lab

2.1 A

1 00 00 00 00 00 00 00 00 // junk
2 00 00 00 00 00 00 00 00 // junk
3 00 00 00 00 00 00 00 00 // junk
4 00 00 00 00 00 00 00 00 // junk
5 00 00 00 00 00 00 00 00 // junk
6 79 15 40 // touch 1 ’ s add r e s s

The program used in Attack Lab is not protected against buffer overflow
attacks. Passing an input string larger than the allocated buffer size will
overwrite parts of the stack outside of the current stack frame. According to
Bryant and O’Hallaron 2016 p. 317, the next part of the stack is the caller’s
stack frame holding the return address, which the program will return to
after running the current function.

My exploit string is corrupting the stack, as the size of the input exceeds
the allocated buffer size. The buffer size in my target is 0x28 or 40. This
is determined by disassembling the binary and finding the part, where the
buffer size is defined. The first 40 ”00” in my attack string is junk, to enlarge
the input to the buffers maximum capacity. The last part of the input will
be overwritten into the caller’s stack frame, specifically the return address.

2.2 B

Code-injection attacks work by injecting byte-code as part of the input
string. The input has to be slightly larger than the buffer size so that
the attacker can overwrite the return address. By using tools such as disas-
sembling and gdb, the attacker can retrieve the address of the buffer, where

4

the injected code is conveniently stored. By overwriting the return address
to the buffer, the attack can run any byte-code.

If it is impossible to determine the buffer’s location on the stack or if the
buffer’s location is non-executable, return-oriented attacks is an alternative
to code-injection attacks. It works by looking through the disassembled
code for any interesting segments of byte-code. Such a segment could be
to move data from a register to another. The concept is to find relevant
segments (or gadgets) to complete the attack and put their addresses in the
input string. The segments have to end with a return statement so that the
program returns to the buffer and runs the next gadget.

For example, in the fourth level of Attack Lab, I had to run a function
with my cookie string as the first parameter. The first parameter of a func-
tion is stored in the register %rdi, and I, therefore, had to store my cookie
string there, before running the function named ”touch2”. I succeeded with
doing this by finding a gadget running pop %rax, which reads the value on
the top of the stack and stores it in %rax. Afterwards, I was able to find a
gadget moving the value of %rax to %rdi. Ultimately, I ended up with an
attack string looking like this

1 00 00 00 00 00 00 00 00 // junk
2 00 00 00 00 00 00 00 00 // junk
3 00 00 00 00 00 00 00 00 // junk
4 00 00 00 00 00 00 00 00 // junk
5 00 00 00 00 00 00 00 00 // junk
6 7e 17 40 00 00 00 00 00 // pop %rax (g e t v a l 3 9 5)
7 ad e7 d f 72 00 00 00 00 // cook i e
8 71 17 40 00 00 00 00 00 // movq %rax , %r d i (g e t v a l 3 3 9)
9 a7 15 40 00 00 00 00 00 // touch2 ’ s add r e s s

The attack string is referencing the following two functions

1 uns i gned g e t v a l 3 9 5 ()
2 {
3 r e t u r n 3277325007U;
4 }

1 uns i gned addva l 339 (uns i gned x)
2 {
3 r e t u r n x + 3232023177U;
4 }

They may not look like something that can be used to attack a program,
but when compiled, they look like this

5

1 000000000040177b <ge t v a l 395 >:
2 40177b : b8 c f 02 58 c3 mov $0xc35802cf ,%eax
3 401780: c3 r e t q

1 000000000040176 e <s e t v a l 3 9 9 >:
2 40176 e : c7 07 22 48 89 c7 movl $0xc7894822 ,(% r d i)
3 401774: c3 r e t q

The 58 operation in getval 395 is byte-code for pop %rax, and 48 89 c7 in
getval 399 is byte-code for movq %rax, %rdi. The addresses on line 6 and
8 of my attack string are pointing directly to the aforementioned operations
so that it skips the beginning of the function.

6

3. Malloc Lab

3.1 A

Heaps store the data, that the program references. Since programs often
have dynamic data, the compiler is unable to pre-determine at compile-time
the actual size of certain data structures. Dynamically allocating memory is
a hard task to do correctly and efficiently, which is why developers of such
functionality use a heap checker. A heap checker is checking the heap for
inconsistency and is intended as a debugging tool, and are not being run in
production.

There is no definitive answer to what a heap checker should check for, but
some example could include

• Is there allocated blocks in the free list?

• Do the pointers in a list entry point to valid heap addresses?

• Do any blocks overlap?

• Is there any neighbouring free blocks, that should have coalesced?

• Does the footer and header of a block have the same size and allocation
bits?

3.2 B

1 /∗
2 ∗ mm free − F r e e i n g a b l o ck removes i t from the f r e e l i s t
3 ∗/
4 vo i d mm free (vo i d ∗ p t r)
5 {
6 /∗ Get the s i z e o f the b l o ck ∗/

7

7 s i z e t s i z e = GET SIZE (HDRP(p t r)) ;
8
9 /∗ Update b l o ck heade r and f o o t e r ∗/

10 DEFINE BLOCK(ptr , s i z e , 0) ;
11
12 /∗ See i f i n t e rm ed i a t e b l o c k s can be merged i n t o one ∗/
13 c o a l e s c e (p t r) ;
14 }

The intention of the free function is to mark a block of data on the heap
as unallocated. The free function above is taken from my implementation
of an explicit free list. Explicit free lists work by having a list consisting
only of unallocated blocks. Whenever the memory allocator needs to find
a block to allocate, it can iterate over all unallocated blocks. An explicit
free list is similar to an implicit free list, which is a list consisting of both
unallocated and allocated blocks. Since an allocator allocating a new block
have no gain in iterating over already allocated blocks, the explicit free list
is better performing in regards to speed.

The function takes a pointer as a parameter and then finds the size of the
allocated block, which is stored in the block-header, accessed using HDRP.
The HDRP macro returns a new pointer, which is 4 bytes back on the heap.
The reason why the header is back on the heap is that the given pointer is
pointing to the actual payload. The allocator is engineered in such a way,
that all incoming and outgoing pointers consistently point to the payload.

The header contains an integer, which holds the allocation status and size of
the block. The size can be determined using a simple bit operation, nulling
the three least significant bits. After determining the size, the free method
will write a new header and footer, using the DEFINE BLOCK macro. DE-
FINE BLOCK is essentially an alias of:

1 PUT(HDRP(p t r) , PACK(s i z e , a l l o c)) ;
2 PUT(FTRP(p t r) , PACK(s i z e , a l l o c)) ;

This code updates the header and footer to store that the block at *ptr is
now unallocated. When this is done, the block is considered unallocated
and should be put in the explicit free list. The block is put in the free list
in the coalesce function, and here we check if it can coalesce with another
block. The coalesce function checks the neighbouring blocks, to see if they
can coalesce into one. If not, the newly freed block will be added to the
beginning of the free list.

8

The reason why coalescing is a good idea, is to avoid external fragmentation.
According to Bryant and O’Hallaron 2016 p. 882, external fragmentation is
when there is enough memory to satisfy a store request, but there are no
blocks of a large enough size.

9

4. Topics from the class

4.1 A

According to Bryant and O’Hallaron 2016 p. 616, Locality of reference or
principle of locality is a phenomenon, where the running program tends
to access memory addresses near or equal to recently accessed addresses.
Locality is typically divided into to categories: temporal and spatial locality.
Temporal locality is when the same memory address is likely to be referenced
again soon. Spatial locality is when nearby memory addresses are likely to
be referenced soon.

Modern computer systems have multiple different memory devices, which
can be split into a hierarchy. The hierarchy spans from memory devices that
are smaller, costlier and faster to larger, cheaper and slower. The concept is
that any particular level hold a subset of the memory from the level below
it, but with better access time. When a program tries to access some data
in a particular memory device, and the memory device holds this data, it is
called a hit. Having to retrieve the data from a lower level is called a miss
and inflicts a performance penalty. Having a low miss rate can therefore
greatly improve the performance of a program. Programs with good locality
tend to access more data from the upper levels of the memory hierarchy,
while programs with bad locality tend to access data more often from the
lower levels. Developing with locality in mind, can therefore greatly improve
stability and performance.

Having bad locality can lead to pollution of the upper levels, where the
system caches data that the program does not intend to access. It can also
lead to cache thrashing, where multiple memory locations compete for the
same cache lines. This leads to excessive cache misses.

10

4.2 B

As explained in 4.1, a computer system contains a number of memory caches.
According to Bryant and O’Hallaron 2016 p. 668, a large cache size increases
the hit rate, as more data can be cached. However, it is harder to make larger
caches run faster. Therefore, the size of a cache decreases the higher it is in
the memory hierarchy.

A system with m-bits can form M = 2m unique addresses. A memory cache
is organised as an array of S = 2s sets, with E cache lines. Each line con-
sists of a data block of B = 2b bytes. This is not including the validity bit
nor tag bits. The validity bit describes whether the entry of the cache is
valid and meaningful, and the tag bits is a unique identifier, formed from
a subset of the current blocks memory address. Cache sizes can be deter-
mined using the formula C = S ·E ·B. For example, a cache with eight sets,
two lines per set and four bytes per block would have a size of 64 data bytes.

4.3 C

Undefined behaviour is the result of executing code, that is not specified in
the language specification. It is the responsibility of the programmer to write
programs, that never invokes undefined behaviour. Undefined behaviour ex-
ists to give the compiler some leeway in producing optimised code. A simple,
yet powerful example, is that the compiler can assume that integer overflows
never happen. This allows for optimisations of code such as x < x + 1 to
always be true.

Dividing by 0 is an example of something considered undefined behaviour.
C has no bit pattern to represent ∞ as an integer, which means that there
is no valid integer result of x/0. The result of running the code below is
undefined and can result in literally anything.

1 i n t main (vo i d)
2 {
3 i n t x = 42 ;
4 r e t u r n x / 0 ; // unde f i n ed b eha v i o r
5 }

11

4.4 D

According to Bryant and O’Hallaron 2016 p. 765, Linux faults and aborts
can be divided into four categories.

• Divide error, when a program attempts to divide by zero or when the
result of a division is too large for the destination operand.

• General protection fault, which can occur for many reasons, but often
when the program tried to access undefined virtual memory.

• Page fault, which is an exception, where the instruction triggering the
exception is restarted. This happens when the operating system first
needs to load applicate data into the physical memory.

• Machine check, which occurs when the system runs into an unrecov-
erable hardware error.

In Linux, general protection faults are reported as Segmentation faults.

1 i n t main (vo i d)
2 {
3 i n t ∗x ;
4 ∗x = 42 ; // segmenta t i on f a u l t
5 }

The above code will construct a pointer to an integer. The pointer is not
being set to an address and is therefore NULL. This means that there is no
allocated space in the memory for x. Dereferencing the pointer and setting
it to 42 will result in a general protection fault / segmentation fault. This is
because the program is trying to write 42 at the address NULL. The code
above is also an example of undefined behaviour.

12

Bibliography

Bryant, Randal E. and David R. O’Hallaron (2016). Computer Systems:
A Programmer’s Perspective. Global Edition. Pearson. isbn: 978-1-292-
10176-7.

13

